Metamath Proof Explorer


Theorem axc5c4c711toc5

Description: Rederivation of sp from axc5c4c711 . Note that ax6 is used for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011) Revised to use ax6v instead of ax6 , so that this rederivation requires only ax6v and propositional calculus. (Revised by BJ, 14-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c4c711toc5 x φ φ

Proof

Step Hyp Ref Expression
1 ax6v ¬ x ¬ x = y
2 pm2.21 ¬ φ φ x x φ ¬ x = y
3 ax-1 φ x x φ ¬ x = y x x ¬ x x x φ ¬ x = y φ x x φ ¬ x = y
4 axc5c4c711 x x ¬ x x x φ ¬ x = y φ x x φ ¬ x = y x φ x ¬ x = y
5 2 3 4 3syl ¬ φ x φ x ¬ x = y
6 1 5 mtoi ¬ φ ¬ x φ
7 6 con4i x φ φ