Metamath Proof Explorer


Theorem axc5c4c711toc5

Description: Rederivation of sp from axc5c4c711 . Note that ax6 is used for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011) Revised to use ax6v instead of ax6 , so that this rederivation requires only ax6v and propositional calculus. (Revised by BJ, 14-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c4c711toc5 xφφ

Proof

Step Hyp Ref Expression
1 ax6v ¬x¬x=y
2 pm2.21 ¬φφxxφ¬x=y
3 ax-1 φxxφ¬x=yxx¬xxxφ¬x=yφxxφ¬x=y
4 axc5c4c711 xx¬xxxφ¬x=yφxxφ¬x=yxφx¬x=y
5 2 3 4 3syl ¬φxφx¬x=y
6 1 5 mtoi ¬φ¬xφ
7 6 con4i xφφ