Metamath Proof Explorer


Theorem axc5c711toc7

Description: Rederivation of ax-c7 from axc5c711 . Note that ax-c7 and ax-11 are not used by the rederivation. The use of alimi (which uses ax-c5 ) is allowed since we have already proved axc5c711toc5 . (Contributed by NM, 19-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c711toc7 ¬x¬xφφ

Proof

Step Hyp Ref Expression
1 hba1-o xφxxφ
2 1 con3i ¬xxφ¬xφ
3 2 alimi x¬xxφx¬xφ
4 3 sps-o xx¬xxφx¬xφ
5 4 con3i ¬x¬xφ¬xx¬xxφ
6 pm2.21 ¬xx¬xxφxx¬xxφxφ
7 axc5c711 xx¬xxφxφφ
8 5 6 7 3syl ¬x¬xφφ