Metamath Proof Explorer


Theorem axc711

Description: Proof of a single axiom that can replace both ax-c7 and ax-11 . See axc711toc7 and axc711to11 for the rederivation of those axioms. (Contributed by NM, 18-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc711 ¬x¬yxφyφ

Proof

Step Hyp Ref Expression
1 ax-11 yxφxyφ
2 1 con3i ¬xyφ¬yxφ
3 2 alimi x¬xyφx¬yxφ
4 3 con3i ¬x¬yxφ¬x¬xyφ
5 ax-c7 ¬x¬xyφyφ
6 4 5 syl ¬x¬yxφyφ