Metamath Proof Explorer


Theorem axextbdist

Description: axextb with distinctors instead of distinct variable restrictions. (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Assertion axextbdist ¬ z z = x ¬ z z = y x = y z z x z y

Proof

Step Hyp Ref Expression
1 axc9 ¬ z z = x ¬ z z = y x = y z x = y
2 1 imp ¬ z z = x ¬ z z = y x = y z x = y
3 nfnae z ¬ z z = x
4 nfnae z ¬ z z = y
5 3 4 nfan z ¬ z z = x ¬ z z = y
6 elequ2 x = y z x z y
7 6 a1i ¬ z z = x ¬ z z = y x = y z x z y
8 5 7 alimd ¬ z z = x ¬ z z = y z x = y z z x z y
9 2 8 syld ¬ z z = x ¬ z z = y x = y z z x z y
10 axextdist ¬ z z = x ¬ z z = y z z x z y x = y
11 9 10 impbid ¬ z z = x ¬ z z = y x = y z z x z y