Metamath Proof Explorer


Theorem axextbdist

Description: axextb with distinctors instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Assertion axextbdist ¬zz=x¬zz=yx=yzzxzy

Proof

Step Hyp Ref Expression
1 axc9 ¬zz=x¬zz=yx=yzx=y
2 1 imp ¬zz=x¬zz=yx=yzx=y
3 nfnae z¬zz=x
4 nfnae z¬zz=y
5 3 4 nfan z¬zz=x¬zz=y
6 elequ2 x=yzxzy
7 6 a1i ¬zz=x¬zz=yx=yzxzy
8 5 7 alimd ¬zz=x¬zz=yzx=yzzxzy
9 2 8 syld ¬zz=x¬zz=yx=yzzxzy
10 axextdist ¬zz=x¬zz=yzzxzyx=y
11 9 10 impbid ¬zz=x¬zz=yx=yzzxzy