Metamath Proof Explorer


Theorem axextbdist

Description: axextb with distinctors instead of distinct variable restrictions. (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Assertion axextbdist ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 = 𝑦 ↔ ∀ 𝑧 ( 𝑧𝑥𝑧𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 axc9 ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) )
2 1 imp ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) )
3 nfnae 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑥
4 nfnae 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑦
5 3 4 nfan 𝑧 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 )
6 elequ2 ( 𝑥 = 𝑦 → ( 𝑧𝑥𝑧𝑦 ) )
7 6 a1i ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 = 𝑦 → ( 𝑧𝑥𝑧𝑦 ) ) )
8 5 7 alimd ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∀ 𝑧 𝑥 = 𝑦 → ∀ 𝑧 ( 𝑧𝑥𝑧𝑦 ) ) )
9 2 8 syld ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 = 𝑦 → ∀ 𝑧 ( 𝑧𝑥𝑧𝑦 ) ) )
10 axextdist ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∀ 𝑧 ( 𝑧𝑥𝑧𝑦 ) → 𝑥 = 𝑦 ) )
11 9 10 impbid ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 = 𝑦 ↔ ∀ 𝑧 ( 𝑧𝑥𝑧𝑦 ) ) )