Step |
Hyp |
Ref |
Expression |
1 |
|
axc9 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |
2 |
1
|
imp |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
3 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑥 |
4 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑦 |
5 |
3 4
|
nfan |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) |
6 |
|
elequ2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) |
7 |
6
|
a1i |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) |
8 |
5 7
|
alimd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∀ 𝑧 𝑥 = 𝑦 → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) |
9 |
2 8
|
syld |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 = 𝑦 → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) |
10 |
|
axextdist |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) |
11 |
9 10
|
impbid |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑥 = 𝑦 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) |