| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axc9 | ⊢ ( ¬  ∀ 𝑧 𝑧  =  𝑥  →  ( ¬  ∀ 𝑧 𝑧  =  𝑦  →  ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) ) | 
						
							| 2 | 1 | imp | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  ( 𝑥  =  𝑦  →  ∀ 𝑧 𝑥  =  𝑦 ) ) | 
						
							| 3 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑧 𝑧  =  𝑥 | 
						
							| 4 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑧 𝑧  =  𝑦 | 
						
							| 5 | 3 4 | nfan | ⊢ Ⅎ 𝑧 ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 ) | 
						
							| 6 |  | elequ2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  ( 𝑥  =  𝑦  →  ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 ) ) ) | 
						
							| 8 | 5 7 | alimd | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  ( ∀ 𝑧 𝑥  =  𝑦  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 ) ) ) | 
						
							| 9 | 2 8 | syld | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  ( 𝑥  =  𝑦  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 ) ) ) | 
						
							| 10 |  | axextdist | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  ( ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 11 | 9 10 | impbid | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  ( 𝑥  =  𝑦  ↔  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 ) ) ) |