Metamath Proof Explorer


Theorem 19.12b

Description: Version of 19.12vv with not-free hypotheses, instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses 19.12b.1 𝑦 𝜑
19.12b.2 𝑥 𝜓
Assertion 19.12b ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∀ 𝑦𝑥 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.12b.1 𝑦 𝜑
2 19.12b.2 𝑥 𝜓
3 1 19.21 ( ∀ 𝑦 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑦 𝜓 ) )
4 3 exbii ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) )
5 2 nfal 𝑥𝑦 𝜓
6 5 19.36 ( ∃ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) )
7 2 19.36 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑𝜓 ) )
8 7 albii ( ∀ 𝑦𝑥 ( 𝜑𝜓 ) ↔ ∀ 𝑦 ( ∀ 𝑥 𝜑𝜓 ) )
9 1 nfal 𝑦𝑥 𝜑
10 9 19.21 ( ∀ 𝑦 ( ∀ 𝑥 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) )
11 8 10 bitr2i ( ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ↔ ∀ 𝑦𝑥 ( 𝜑𝜓 ) )
12 4 6 11 3bitri ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∀ 𝑦𝑥 ( 𝜑𝜓 ) )