Description: There is always a set not in y . (Contributed by Scott Fenton, 13-Dec-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | exnel | ⊢ ∃ 𝑥 ¬ 𝑥 ∈ 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirrv | ⊢ ¬ 𝑦 ∈ 𝑦 | |
2 | 1 | nfth | ⊢ Ⅎ 𝑥 ¬ 𝑦 ∈ 𝑦 |
3 | ax8 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑦 ) ) | |
4 | 3 | con3d | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑦 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑦 ) ) |
5 | 2 4 | spime | ⊢ ( ¬ 𝑦 ∈ 𝑦 → ∃ 𝑥 ¬ 𝑥 ∈ 𝑦 ) |
6 | 1 5 | ax-mp | ⊢ ∃ 𝑥 ¬ 𝑥 ∈ 𝑦 |