Description: There is always a set not in y . (Contributed by Scott Fenton, 13-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exnel | ⊢ ∃ 𝑥 ¬ 𝑥 ∈ 𝑦 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elirrv | ⊢ ¬ 𝑦 ∈ 𝑦 | |
| 2 | 1 | nfth | ⊢ Ⅎ 𝑥 ¬ 𝑦 ∈ 𝑦 | 
| 3 | ax8 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑦 ) ) | |
| 4 | 3 | con3d | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑦 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑦 ) ) | 
| 5 | 2 4 | spime | ⊢ ( ¬ 𝑦 ∈ 𝑦 → ∃ 𝑥 ¬ 𝑥 ∈ 𝑦 ) | 
| 6 | 1 5 | ax-mp | ⊢ ∃ 𝑥 ¬ 𝑥 ∈ 𝑦 |