| Step | Hyp | Ref | Expression | 
						
							| 1 |  | el | ⊢ ∃ 𝑧 𝑥  ∈  𝑧 | 
						
							| 2 |  | df-ex | ⊢ ( ∃ 𝑧 𝑥  ∈  𝑧  ↔  ¬  ∀ 𝑧 ¬  𝑥  ∈  𝑧 ) | 
						
							| 3 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑦 𝑦  =  𝑥 | 
						
							| 4 |  | dveel1 | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  ( 𝑥  ∈  𝑧  →  ∀ 𝑦 𝑥  ∈  𝑧 ) ) | 
						
							| 5 | 3 4 | nf5d | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  Ⅎ 𝑦 𝑥  ∈  𝑧 ) | 
						
							| 6 | 5 | nfnd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  Ⅎ 𝑦 ¬  𝑥  ∈  𝑧 ) | 
						
							| 7 |  | elequ2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑥  ∈  𝑧  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 8 | 7 | notbid | ⊢ ( 𝑧  =  𝑦  →  ( ¬  𝑥  ∈  𝑧  ↔  ¬  𝑥  ∈  𝑦 ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  ( 𝑧  =  𝑦  →  ( ¬  𝑥  ∈  𝑧  ↔  ¬  𝑥  ∈  𝑦 ) ) ) | 
						
							| 10 | 3 6 9 | cbvald | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  ( ∀ 𝑧 ¬  𝑥  ∈  𝑧  ↔  ∀ 𝑦 ¬  𝑥  ∈  𝑦 ) ) | 
						
							| 11 | 10 | notbid | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  ( ¬  ∀ 𝑧 ¬  𝑥  ∈  𝑧  ↔  ¬  ∀ 𝑦 ¬  𝑥  ∈  𝑦 ) ) | 
						
							| 12 | 2 11 | bitrid | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  ( ∃ 𝑧 𝑥  ∈  𝑧  ↔  ¬  ∀ 𝑦 ¬  𝑥  ∈  𝑦 ) ) | 
						
							| 13 | 1 12 | mpbii | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  ¬  ∀ 𝑦 ¬  𝑥  ∈  𝑦 ) | 
						
							| 14 |  | elirrv | ⊢ ¬  𝑦  ∈  𝑦 | 
						
							| 15 |  | elequ1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∈  𝑦  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 16 | 14 15 | mtbii | ⊢ ( 𝑦  =  𝑥  →  ¬  𝑥  ∈  𝑦 ) | 
						
							| 17 | 16 | alimi | ⊢ ( ∀ 𝑦 𝑦  =  𝑥  →  ∀ 𝑦 ¬  𝑥  ∈  𝑦 ) | 
						
							| 18 | 17 | con3i | ⊢ ( ¬  ∀ 𝑦 ¬  𝑥  ∈  𝑦  →  ¬  ∀ 𝑦 𝑦  =  𝑥 ) | 
						
							| 19 | 13 18 | impbii | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  ↔  ¬  ∀ 𝑦 ¬  𝑥  ∈  𝑦 ) |