Metamath Proof Explorer


Theorem distel

Description: Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el and elirrv .) (Contributed by Scott Fenton, 15-Dec-2010)

Ref Expression
Assertion distel ( ¬ ∀ 𝑦 𝑦 = 𝑥 ↔ ¬ ∀ 𝑦 ¬ 𝑥𝑦 )

Proof

Step Hyp Ref Expression
1 el 𝑧 𝑥𝑧
2 df-ex ( ∃ 𝑧 𝑥𝑧 ↔ ¬ ∀ 𝑧 ¬ 𝑥𝑧 )
3 nfnae 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑥
4 dveel1 ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( 𝑥𝑧 → ∀ 𝑦 𝑥𝑧 ) )
5 3 4 nf5d ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥𝑧 )
6 5 nfnd ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 ¬ 𝑥𝑧 )
7 elequ2 ( 𝑧 = 𝑦 → ( 𝑥𝑧𝑥𝑦 ) )
8 7 notbid ( 𝑧 = 𝑦 → ( ¬ 𝑥𝑧 ↔ ¬ 𝑥𝑦 ) )
9 8 a1i ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( 𝑧 = 𝑦 → ( ¬ 𝑥𝑧 ↔ ¬ 𝑥𝑦 ) ) )
10 3 6 9 cbvald ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑧 ¬ 𝑥𝑧 ↔ ∀ 𝑦 ¬ 𝑥𝑦 ) )
11 10 notbid ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ¬ ∀ 𝑧 ¬ 𝑥𝑧 ↔ ¬ ∀ 𝑦 ¬ 𝑥𝑦 ) )
12 2 11 syl5bb ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑧 𝑥𝑧 ↔ ¬ ∀ 𝑦 ¬ 𝑥𝑦 ) )
13 1 12 mpbii ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ¬ ∀ 𝑦 ¬ 𝑥𝑦 )
14 elirrv ¬ 𝑦𝑦
15 elequ1 ( 𝑦 = 𝑥 → ( 𝑦𝑦𝑥𝑦 ) )
16 14 15 mtbii ( 𝑦 = 𝑥 → ¬ 𝑥𝑦 )
17 16 alimi ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑦 ¬ 𝑥𝑦 )
18 17 con3i ( ¬ ∀ 𝑦 ¬ 𝑥𝑦 → ¬ ∀ 𝑦 𝑦 = 𝑥 )
19 13 18 impbii ( ¬ ∀ 𝑦 𝑦 = 𝑥 ↔ ¬ ∀ 𝑦 ¬ 𝑥𝑦 )