Step |
Hyp |
Ref |
Expression |
1 |
|
el |
⊢ ∃ 𝑧 𝑥 ∈ 𝑧 |
2 |
|
df-ex |
⊢ ( ∃ 𝑧 𝑥 ∈ 𝑧 ↔ ¬ ∀ 𝑧 ¬ 𝑥 ∈ 𝑧 ) |
3 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑥 |
4 |
|
dveel1 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( 𝑥 ∈ 𝑧 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) |
5 |
3 4
|
nf5d |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ∈ 𝑧 ) |
6 |
5
|
nfnd |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 ¬ 𝑥 ∈ 𝑧 ) |
7 |
|
elequ2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦 ) ) |
8 |
7
|
notbid |
⊢ ( 𝑧 = 𝑦 → ( ¬ 𝑥 ∈ 𝑧 ↔ ¬ 𝑥 ∈ 𝑦 ) ) |
9 |
8
|
a1i |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( 𝑧 = 𝑦 → ( ¬ 𝑥 ∈ 𝑧 ↔ ¬ 𝑥 ∈ 𝑦 ) ) ) |
10 |
3 6 9
|
cbvald |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑧 ¬ 𝑥 ∈ 𝑧 ↔ ∀ 𝑦 ¬ 𝑥 ∈ 𝑦 ) ) |
11 |
10
|
notbid |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ¬ ∀ 𝑧 ¬ 𝑥 ∈ 𝑧 ↔ ¬ ∀ 𝑦 ¬ 𝑥 ∈ 𝑦 ) ) |
12 |
2 11
|
syl5bb |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ∃ 𝑧 𝑥 ∈ 𝑧 ↔ ¬ ∀ 𝑦 ¬ 𝑥 ∈ 𝑦 ) ) |
13 |
1 12
|
mpbii |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ¬ ∀ 𝑦 ¬ 𝑥 ∈ 𝑦 ) |
14 |
|
elirrv |
⊢ ¬ 𝑦 ∈ 𝑦 |
15 |
|
elequ1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) |
16 |
14 15
|
mtbii |
⊢ ( 𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝑦 ) |
17 |
16
|
alimi |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑦 ¬ 𝑥 ∈ 𝑦 ) |
18 |
17
|
con3i |
⊢ ( ¬ ∀ 𝑦 ¬ 𝑥 ∈ 𝑦 → ¬ ∀ 𝑦 𝑦 = 𝑥 ) |
19 |
13 18
|
impbii |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 ↔ ¬ ∀ 𝑦 ¬ 𝑥 ∈ 𝑦 ) |