Metamath Proof Explorer


Theorem axextndbi

Description: axextnd as a biconditional. (Contributed by Scott Fenton, 14-Dec-2010)

Ref Expression
Assertion axextndbi 𝑧 ( 𝑥 = 𝑦 ↔ ( 𝑧𝑥𝑧𝑦 ) )

Proof

Step Hyp Ref Expression
1 axextnd 𝑧 ( ( 𝑧𝑥𝑧𝑦 ) → 𝑥 = 𝑦 )
2 elequ2 ( 𝑥 = 𝑦 → ( 𝑧𝑥𝑧𝑦 ) )
3 2 jctl ( ( ( 𝑧𝑥𝑧𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝑥 = 𝑦 → ( 𝑧𝑥𝑧𝑦 ) ) ∧ ( ( 𝑧𝑥𝑧𝑦 ) → 𝑥 = 𝑦 ) ) )
4 1 3 eximii 𝑧 ( ( 𝑥 = 𝑦 → ( 𝑧𝑥𝑧𝑦 ) ) ∧ ( ( 𝑧𝑥𝑧𝑦 ) → 𝑥 = 𝑦 ) )
5 dfbi2 ( ( 𝑥 = 𝑦 ↔ ( 𝑧𝑥𝑧𝑦 ) ) ↔ ( ( 𝑥 = 𝑦 → ( 𝑧𝑥𝑧𝑦 ) ) ∧ ( ( 𝑧𝑥𝑧𝑦 ) → 𝑥 = 𝑦 ) ) )
6 5 exbii ( ∃ 𝑧 ( 𝑥 = 𝑦 ↔ ( 𝑧𝑥𝑧𝑦 ) ) ↔ ∃ 𝑧 ( ( 𝑥 = 𝑦 → ( 𝑧𝑥𝑧𝑦 ) ) ∧ ( ( 𝑧𝑥𝑧𝑦 ) → 𝑥 = 𝑦 ) ) )
7 4 6 mpbir 𝑧 ( 𝑥 = 𝑦 ↔ ( 𝑧𝑥𝑧𝑦 ) )