| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 2 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 3 | 1 2 | nfan | ⊢ Ⅎ 𝑥 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 4 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 6 | 5 | nfcrd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑤  ∈  𝑦 ) | 
						
							| 7 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑥 𝑧 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑧 ) | 
						
							| 9 | 8 | nfcrd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑤  ∈  𝑧 ) | 
						
							| 10 | 6 9 | nfbid | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( 𝑤  ∈  𝑦  ↔  𝑤  ∈  𝑧 ) ) | 
						
							| 11 |  | elequ1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  ∈  𝑦  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 12 |  | elequ1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  ∈  𝑧  ↔  𝑥  ∈  𝑧 ) ) | 
						
							| 13 | 11 12 | bibi12d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑤  ∈  𝑦  ↔  𝑤  ∈  𝑧 )  ↔  ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 ) ) ) | 
						
							| 14 | 13 | a1i | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( 𝑤  =  𝑥  →  ( ( 𝑤  ∈  𝑦  ↔  𝑤  ∈  𝑧 )  ↔  ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 ) ) ) ) | 
						
							| 15 | 3 10 14 | cbvald | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( ∀ 𝑤 ( 𝑤  ∈  𝑦  ↔  𝑤  ∈  𝑧 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 ) ) ) | 
						
							| 16 |  | axextg | ⊢ ( ∀ 𝑤 ( 𝑤  ∈  𝑦  ↔  𝑤  ∈  𝑧 )  →  𝑦  =  𝑧 ) | 
						
							| 17 | 15 16 | biimtrrdi | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 18 |  | 19.8a | ⊢ ( 𝑦  =  𝑧  →  ∃ 𝑥 𝑦  =  𝑧 ) | 
						
							| 19 | 17 18 | syl6 | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 )  →  ∃ 𝑥 𝑦  =  𝑧 ) ) | 
						
							| 20 | 19 | ex | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 )  →  ∃ 𝑥 𝑦  =  𝑧 ) ) ) | 
						
							| 21 |  | ax6e | ⊢ ∃ 𝑥 𝑥  =  𝑧 | 
						
							| 22 |  | ax7 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  𝑧  →  𝑦  =  𝑧 ) ) | 
						
							| 23 | 22 | aleximi | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∃ 𝑥 𝑥  =  𝑧  →  ∃ 𝑥 𝑦  =  𝑧 ) ) | 
						
							| 24 | 21 23 | mpi | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ∃ 𝑥 𝑦  =  𝑧 ) | 
						
							| 25 | 24 | a1d | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 )  →  ∃ 𝑥 𝑦  =  𝑧 ) ) | 
						
							| 26 |  | ax6e | ⊢ ∃ 𝑥 𝑥  =  𝑦 | 
						
							| 27 |  | ax7 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  𝑦  →  𝑧  =  𝑦 ) ) | 
						
							| 28 |  | equcomi | ⊢ ( 𝑧  =  𝑦  →  𝑦  =  𝑧 ) | 
						
							| 29 | 27 28 | syl6 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  𝑦  →  𝑦  =  𝑧 ) ) | 
						
							| 30 | 29 | aleximi | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ∃ 𝑥 𝑥  =  𝑦  →  ∃ 𝑥 𝑦  =  𝑧 ) ) | 
						
							| 31 | 26 30 | mpi | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ∃ 𝑥 𝑦  =  𝑧 ) | 
						
							| 32 | 31 | a1d | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 )  →  ∃ 𝑥 𝑦  =  𝑧 ) ) | 
						
							| 33 | 20 25 32 | pm2.61ii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 )  →  ∃ 𝑥 𝑦  =  𝑧 ) | 
						
							| 34 | 33 | 19.35ri | ⊢ ∃ 𝑥 ( ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 )  →  𝑦  =  𝑧 ) |