| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axrep2 | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑤 ( [ 𝑤  /  𝑧 ] 𝜑  →  𝑤  =  𝑦 )  →  ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑧 ] 𝜑 ) ) ) | 
						
							| 2 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 3 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 4 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 5 |  | nfs1v | ⊢ Ⅎ 𝑧 [ 𝑤  /  𝑧 ] 𝜑 | 
						
							| 6 | 5 | a1i | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑧 [ 𝑤  /  𝑧 ] 𝜑 ) | 
						
							| 7 |  | nfcvd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑧 𝑤 ) | 
						
							| 8 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑧 𝑦 ) | 
						
							| 9 | 7 8 | nfeqd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑧 𝑤  =  𝑦 ) | 
						
							| 10 | 6 9 | nfimd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑧 ( [ 𝑤  /  𝑧 ] 𝜑  →  𝑤  =  𝑦 ) ) | 
						
							| 11 |  | sbequ12r | ⊢ ( 𝑤  =  𝑧  →  ( [ 𝑤  /  𝑧 ] 𝜑  ↔  𝜑 ) ) | 
						
							| 12 |  | equequ1 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑤  =  𝑦  ↔  𝑧  =  𝑦 ) ) | 
						
							| 13 | 11 12 | imbi12d | ⊢ ( 𝑤  =  𝑧  →  ( ( [ 𝑤  /  𝑧 ] 𝜑  →  𝑤  =  𝑦 )  ↔  ( 𝜑  →  𝑧  =  𝑦 ) ) ) | 
						
							| 14 | 13 | a1i | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( 𝑤  =  𝑧  →  ( ( [ 𝑤  /  𝑧 ] 𝜑  →  𝑤  =  𝑦 )  ↔  ( 𝜑  →  𝑧  =  𝑦 ) ) ) ) | 
						
							| 15 | 4 10 14 | cbvald | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑤 ( [ 𝑤  /  𝑧 ] 𝜑  →  𝑤  =  𝑦 )  ↔  ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 ) ) ) | 
						
							| 16 | 3 15 | exbid | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( ∃ 𝑦 ∀ 𝑤 ( [ 𝑤  /  𝑧 ] 𝜑  →  𝑤  =  𝑦 )  ↔  ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 ) ) ) | 
						
							| 17 |  | nfvd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑧 𝑤  ∈  𝑥 ) | 
						
							| 18 | 8 | nfcrd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑧 𝑥  ∈  𝑦 ) | 
						
							| 19 | 3 6 | nfald | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑧 ∀ 𝑦 [ 𝑤  /  𝑧 ] 𝜑 ) | 
						
							| 20 | 18 19 | nfand | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑧 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑧 ] 𝜑 ) ) | 
						
							| 21 | 2 20 | nfexd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑧 ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑧 ] 𝜑 ) ) | 
						
							| 22 | 17 21 | nfbid | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑧 ( 𝑤  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑧 ] 𝜑 ) ) ) | 
						
							| 23 |  | elequ1 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑤  ∈  𝑥  ↔  𝑧  ∈  𝑥 ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑧  ∧  𝑤  =  𝑧 )  →  ( 𝑤  ∈  𝑥  ↔  𝑧  ∈  𝑥 ) ) | 
						
							| 25 |  | nfeqf2 | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 𝑤  =  𝑧 ) | 
						
							| 26 | 3 25 | nfan1 | ⊢ Ⅎ 𝑦 ( ¬  ∀ 𝑦 𝑦  =  𝑧  ∧  𝑤  =  𝑧 ) | 
						
							| 27 | 11 | adantl | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑧  ∧  𝑤  =  𝑧 )  →  ( [ 𝑤  /  𝑧 ] 𝜑  ↔  𝜑 ) ) | 
						
							| 28 | 26 27 | albid | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑧  ∧  𝑤  =  𝑧 )  →  ( ∀ 𝑦 [ 𝑤  /  𝑧 ] 𝜑  ↔  ∀ 𝑦 𝜑 ) ) | 
						
							| 29 | 28 | anbi2d | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑧  ∧  𝑤  =  𝑧 )  →  ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑧 ] 𝜑 )  ↔  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 30 | 29 | exbidv | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑧  ∧  𝑤  =  𝑧 )  →  ( ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑧 ] 𝜑 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 31 | 24 30 | bibi12d | ⊢ ( ( ¬  ∀ 𝑦 𝑦  =  𝑧  ∧  𝑤  =  𝑧 )  →  ( ( 𝑤  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑧 ] 𝜑 ) )  ↔  ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) | 
						
							| 32 | 31 | ex | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( 𝑤  =  𝑧  →  ( ( 𝑤  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑧 ] 𝜑 ) )  ↔  ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) ) | 
						
							| 33 | 4 22 32 | cbvald | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑧 ] 𝜑 ) )  ↔  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) | 
						
							| 34 | 16 33 | imbi12d | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( ( ∃ 𝑦 ∀ 𝑤 ( [ 𝑤  /  𝑧 ] 𝜑  →  𝑤  =  𝑦 )  →  ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑧 ] 𝜑 ) ) )  ↔  ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) ) | 
						
							| 35 | 2 34 | exbid | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑤 ( [ 𝑤  /  𝑧 ] 𝜑  →  𝑤  =  𝑦 )  →  ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑧 ] 𝜑 ) ) )  ↔  ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) ) | 
						
							| 36 | 1 35 | mpbii | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) |