Step |
Hyp |
Ref |
Expression |
1 |
|
axrep2 |
⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑤 ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) ) |
2 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 |
3 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 |
4 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 |
5 |
|
nfs1v |
⊢ Ⅎ 𝑧 [ 𝑤 / 𝑧 ] 𝜑 |
6 |
5
|
a1i |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 [ 𝑤 / 𝑧 ] 𝜑 ) |
7 |
|
nfcvd |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑤 ) |
8 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑦 ) |
9 |
7 8
|
nfeqd |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑤 = 𝑦 ) |
10 |
6 9
|
nfimd |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) ) |
11 |
|
sbequ12r |
⊢ ( 𝑤 = 𝑧 → ( [ 𝑤 / 𝑧 ] 𝜑 ↔ 𝜑 ) ) |
12 |
|
equequ1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 = 𝑦 ↔ 𝑧 = 𝑦 ) ) |
13 |
11 12
|
imbi12d |
⊢ ( 𝑤 = 𝑧 → ( ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) ↔ ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
14 |
13
|
a1i |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( 𝑤 = 𝑧 → ( ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) ↔ ( 𝜑 → 𝑧 = 𝑦 ) ) ) ) |
15 |
4 10 14
|
cbvald |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑤 ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) ↔ ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
16 |
3 15
|
exbid |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∃ 𝑦 ∀ 𝑤 ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
17 |
|
nfvd |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑤 ∈ 𝑥 ) |
18 |
8
|
nfcrd |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑥 ∈ 𝑦 ) |
19 |
3 6
|
nfald |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) |
20 |
18 19
|
nfand |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) |
21 |
2 20
|
nfexd |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) |
22 |
17 21
|
nfbid |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 ( 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) ) |
23 |
|
elequ1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) |
24 |
23
|
adantl |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧 ) → ( 𝑤 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) |
25 |
|
nfeqf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑤 = 𝑧 ) |
26 |
3 25
|
nfan1 |
⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧 ) |
27 |
11
|
adantl |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧 ) → ( [ 𝑤 / 𝑧 ] 𝜑 ↔ 𝜑 ) ) |
28 |
26 27
|
albid |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧 ) → ( ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ↔ ∀ 𝑦 𝜑 ) ) |
29 |
28
|
anbi2d |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧 ) → ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
30 |
29
|
exbidv |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
31 |
24 30
|
bibi12d |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧 ) → ( ( 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
32 |
31
|
ex |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
33 |
4 22 32
|
cbvald |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
34 |
16 33
|
imbi12d |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ( ∃ 𝑦 ∀ 𝑤 ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) ) ↔ ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
35 |
2 34
|
exbid |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑤 ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) ) ↔ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
36 |
1 35
|
mpbii |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |