| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfe1 | ⊢ Ⅎ 𝑤 ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑤 ) | 
						
							| 2 |  | nfv | ⊢ Ⅎ 𝑤 ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) | 
						
							| 3 | 1 2 | nfim | ⊢ Ⅎ 𝑤 ( ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑤 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 4 | 3 | nfex | ⊢ Ⅎ 𝑤 ∃ 𝑥 ( ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑤 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 5 |  | axreplem | ⊢ ( 𝑤  =  𝑦  →  ( ∃ 𝑥 ( ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑤 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) ) )  ↔  ∃ 𝑥 ( ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑤 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) ) | 
						
							| 6 |  | axrep1 | ⊢ ∃ 𝑥 ( ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑤 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 7 | 4 5 6 | chvarfv | ⊢ ∃ 𝑥 ( ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑤 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 8 |  | sp | ⊢ ( ∀ 𝑦 𝜑  →  𝜑 ) | 
						
							| 9 | 8 | imim1i | ⊢ ( ( 𝜑  →  𝑧  =  𝑦 )  →  ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 10 | 9 | alimi | ⊢ ( ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 11 | 10 | eximi | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 12 |  | nfv | ⊢ Ⅎ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 ) | 
						
							| 13 |  | nfa1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 𝜑 | 
						
							| 14 |  | nfv | ⊢ Ⅎ 𝑦 𝑧  =  𝑤 | 
						
							| 15 | 13 14 | nfim | ⊢ Ⅎ 𝑦 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑤 ) | 
						
							| 16 | 15 | nfal | ⊢ Ⅎ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑤 ) | 
						
							| 17 |  | equequ2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑧  =  𝑦  ↔  𝑧  =  𝑤 ) ) | 
						
							| 18 | 17 | imbi2d | ⊢ ( 𝑦  =  𝑤  →  ( ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 )  ↔  ( ∀ 𝑦 𝜑  →  𝑧  =  𝑤 ) ) ) | 
						
							| 19 | 18 | albidv | ⊢ ( 𝑦  =  𝑤  →  ( ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 )  ↔  ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑤 ) ) ) | 
						
							| 20 | 12 16 19 | cbvexv1 | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 )  ↔  ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑤 ) ) | 
						
							| 21 | 11 20 | sylib | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑤 ) ) | 
						
							| 22 | 21 | imim1i | ⊢ ( ( ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑤 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) )  →  ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) | 
						
							| 23 | 7 22 | eximii | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) |