| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elequ2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑥  ∈  𝑤  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 2 | 1 | anbi1d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑥  ∈  𝑤  ∧  𝜑 )  ↔  ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) | 
						
							| 3 | 2 | exbidv | ⊢ ( 𝑤  =  𝑦  →  ( ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) | 
						
							| 4 | 3 | bibi2d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) )  ↔  ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) ) | 
						
							| 5 | 4 | albidv | ⊢ ( 𝑤  =  𝑦  →  ( ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) )  ↔  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) ) | 
						
							| 6 | 5 | exbidv | ⊢ ( 𝑤  =  𝑦  →  ( ∃ 𝑥 ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) )  ↔  ∃ 𝑥 ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) ) | 
						
							| 7 | 6 | imbi2d | ⊢ ( 𝑤  =  𝑦  →  ( ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∃ 𝑥 ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) )  ↔  ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∃ 𝑥 ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) ) ) | 
						
							| 8 |  | ax-rep | ⊢ ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 )  →  ∃ 𝑦 ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 9 |  | 19.3v | ⊢ ( ∀ 𝑦 𝜑  ↔  𝜑 ) | 
						
							| 10 | 9 | imbi1i | ⊢ ( ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 )  ↔  ( 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 11 | 10 | albii | ⊢ ( ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 )  ↔  ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 12 | 11 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 )  ↔  ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 13 | 12 | albii | ⊢ ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑  →  𝑧  =  𝑦 )  ↔  ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 14 |  | nfv | ⊢ Ⅎ 𝑥 𝑧  ∈  𝑦 | 
						
							| 15 |  | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) | 
						
							| 16 | 14 15 | nfbi | ⊢ Ⅎ 𝑥 ( 𝑧  ∈  𝑦  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) ) | 
						
							| 17 | 16 | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) ) | 
						
							| 18 |  | nfv | ⊢ Ⅎ 𝑦 ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) | 
						
							| 19 |  | elequ2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑧  ∈  𝑦  ↔  𝑧  ∈  𝑥 ) ) | 
						
							| 20 | 9 | anbi2i | ⊢ ( ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 )  ↔  ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) | 
						
							| 21 | 20 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) ) | 
						
							| 23 | 19 22 | bibi12d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑧  ∈  𝑦  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) )  ↔  ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) ) ) | 
						
							| 24 | 23 | albidv | ⊢ ( 𝑦  =  𝑥  →  ( ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) )  ↔  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) ) ) | 
						
							| 25 | 17 18 24 | cbvexv1 | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑧  ∈  𝑦  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) )  ↔  ∃ 𝑥 ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) ) | 
						
							| 26 | 8 13 25 | 3imtr3i | ⊢ ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∃ 𝑥 ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  𝜑 ) ) ) | 
						
							| 27 | 7 26 | chvarvv | ⊢ ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∃ 𝑥 ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) | 
						
							| 28 | 27 | 19.35ri | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) |