Metamath Proof Explorer


Theorem axrep1

Description: The version of the Axiom of Replacement used in the Metamath Solitaire applet https://us.metamath.org/mmsolitaire/mms.html . Equivalence is shown via the path ax-rep -> axrep1 -> axrep2 -> axrepnd -> zfcndrep = ax-rep . (Contributed by NM, 19-Nov-2005) (Proof shortened by Mario Carneiro, 17-Nov-2016) Remove dependency on ax-13 . (Revised by BJ, 31-May-2019)

Ref Expression
Assertion axrep1 xyzφz=yzzxxxyφ

Proof

Step Hyp Ref Expression
1 elequ2 w=yxwxy
2 1 anbi1d w=yxwφxyφ
3 2 exbidv w=yxxwφxxyφ
4 3 bibi2d w=yzxxxwφzxxxyφ
5 4 albidv w=yzzxxxwφzzxxxyφ
6 5 exbidv w=yxzzxxxwφxzzxxxyφ
7 6 imbi2d w=yxyzφz=yxzzxxxwφxyzφz=yxzzxxxyφ
8 ax-rep xyzyφz=yyzzyxxwyφ
9 19.3v yφφ
10 9 imbi1i yφz=yφz=y
11 10 albii zyφz=yzφz=y
12 11 exbii yzyφz=yyzφz=y
13 12 albii xyzyφz=yxyzφz=y
14 nfv xzy
15 nfe1 xxxwyφ
16 14 15 nfbi xzyxxwyφ
17 16 nfal xzzyxxwyφ
18 nfv yzzxxxwφ
19 elequ2 y=xzyzx
20 9 anbi2i xwyφxwφ
21 20 exbii xxwyφxxwφ
22 21 a1i y=xxxwyφxxwφ
23 19 22 bibi12d y=xzyxxwyφzxxxwφ
24 23 albidv y=xzzyxxwyφzzxxxwφ
25 17 18 24 cbvexv1 yzzyxxwyφxzzxxxwφ
26 8 13 25 3imtr3i xyzφz=yxzzxxxwφ
27 7 26 chvarvv xyzφz=yxzzxxxyφ
28 27 19.35ri xyzφz=yzzxxxyφ