Description: The version of the Axiom of Replacement used in the Metamath Solitaire applet https://us.metamath.org/mmsolitaire/mms.html . Equivalence is shown via the path ax-rep -> axrep1 -> axrep2 -> axrepnd -> zfcndrep = ax-rep . (Contributed by NM, 19-Nov-2005) (Proof shortened by Mario Carneiro, 17-Nov-2016) Remove dependency on ax-13 . (Revised by BJ, 31-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | axrep1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 | |
|
2 | 1 | anbi1d | |
3 | 2 | exbidv | |
4 | 3 | bibi2d | |
5 | 4 | albidv | |
6 | 5 | exbidv | |
7 | 6 | imbi2d | |
8 | ax-rep | |
|
9 | 19.3v | |
|
10 | 9 | imbi1i | |
11 | 10 | albii | |
12 | 11 | exbii | |
13 | 12 | albii | |
14 | nfv | |
|
15 | nfe1 | |
|
16 | 14 15 | nfbi | |
17 | 16 | nfal | |
18 | nfv | |
|
19 | elequ2 | |
|
20 | 9 | anbi2i | |
21 | 20 | exbii | |
22 | 21 | a1i | |
23 | 19 22 | bibi12d | |
24 | 23 | albidv | |
25 | 17 18 24 | cbvexv1 | |
26 | 8 13 25 | 3imtr3i | |
27 | 7 26 | chvarvv | |
28 | 27 | 19.35ri | |