Metamath Proof Explorer


Theorem axrep2

Description: Axiom of Replacement expressed with the fewest number of different variables and without any restrictions on ph . (Contributed by NM, 15-Aug-2003) Remove dependency on ax-13 . (Revised by BJ, 31-May-2019)

Ref Expression
Assertion axrep2 xyzφz=yzzxxxyyφ

Proof

Step Hyp Ref Expression
1 nfe1 wwzyφz=w
2 nfv wzzxxxyyφ
3 1 2 nfim wwzyφz=wzzxxxyyφ
4 3 nfex wxwzyφz=wzzxxxyyφ
5 axreplem w=yxwzyφz=wzzxxxwyφxwzyφz=wzzxxxyyφ
6 axrep1 xwzyφz=wzzxxxwyφ
7 4 5 6 chvarfv xwzyφz=wzzxxxyyφ
8 sp yφφ
9 8 imim1i φz=yyφz=y
10 9 alimi zφz=yzyφz=y
11 10 eximi yzφz=yyzyφz=y
12 nfv wzyφz=y
13 nfa1 yyφ
14 nfv yz=w
15 13 14 nfim yyφz=w
16 15 nfal yzyφz=w
17 equequ2 y=wz=yz=w
18 17 imbi2d y=wyφz=yyφz=w
19 18 albidv y=wzyφz=yzyφz=w
20 12 16 19 cbvexv1 yzyφz=ywzyφz=w
21 11 20 sylib yzφz=ywzyφz=w
22 21 imim1i wzyφz=wzzxxxyyφyzφz=yzzxxxyyφ
23 7 22 eximii xyzφz=yzzxxxyyφ