| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elequ2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 ) ) | 
						
							| 2 | 1 | anbi1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑧  ∈  𝑥  ∧  𝜒 )  ↔  ( 𝑧  ∈  𝑦  ∧  𝜒 ) ) ) | 
						
							| 3 | 2 | exbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑤 ( 𝑧  ∈  𝑥  ∧  𝜒 )  ↔  ∃ 𝑤 ( 𝑧  ∈  𝑦  ∧  𝜒 ) ) ) | 
						
							| 4 | 3 | bibi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜓  ↔  ∃ 𝑤 ( 𝑧  ∈  𝑥  ∧  𝜒 ) )  ↔  ( 𝜓  ↔  ∃ 𝑤 ( 𝑧  ∈  𝑦  ∧  𝜒 ) ) ) ) | 
						
							| 5 | 4 | albidv | ⊢ ( 𝑥  =  𝑦  →  ( ∀ 𝑣 ( 𝜓  ↔  ∃ 𝑤 ( 𝑧  ∈  𝑥  ∧  𝜒 ) )  ↔  ∀ 𝑣 ( 𝜓  ↔  ∃ 𝑤 ( 𝑧  ∈  𝑦  ∧  𝜒 ) ) ) ) | 
						
							| 6 | 5 | imbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  →  ∀ 𝑣 ( 𝜓  ↔  ∃ 𝑤 ( 𝑧  ∈  𝑥  ∧  𝜒 ) ) )  ↔  ( 𝜑  →  ∀ 𝑣 ( 𝜓  ↔  ∃ 𝑤 ( 𝑧  ∈  𝑦  ∧  𝜒 ) ) ) ) ) | 
						
							| 7 | 6 | exbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑢 ( 𝜑  →  ∀ 𝑣 ( 𝜓  ↔  ∃ 𝑤 ( 𝑧  ∈  𝑥  ∧  𝜒 ) ) )  ↔  ∃ 𝑢 ( 𝜑  →  ∀ 𝑣 ( 𝜓  ↔  ∃ 𝑤 ( 𝑧  ∈  𝑦  ∧  𝜒 ) ) ) ) ) |