| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 ) | 
						
							| 2 |  | nfv | ⊢ Ⅎ 𝑦 𝑧  ∈  𝑥 | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  ∈  𝑤 | 
						
							| 4 |  | nfa1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 𝜑 | 
						
							| 5 | 3 4 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) | 
						
							| 6 | 5 | nfex | ⊢ Ⅎ 𝑦 ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) | 
						
							| 7 | 2 6 | nfbi | ⊢ Ⅎ 𝑦 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) ) | 
						
							| 8 | 7 | nfal | ⊢ Ⅎ 𝑦 ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) ) | 
						
							| 9 | 1 8 | nfim | ⊢ Ⅎ 𝑦 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 10 | 9 | nfex | ⊢ Ⅎ 𝑦 ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 11 |  | axreplem | ⊢ ( 𝑦  =  𝑤  →  ( ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) )  ↔  ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) ) ) ) ) | 
						
							| 12 |  | axrep2 | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 13 | 10 11 12 | chvarfv | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑤  ∧  ∀ 𝑦 𝜑 ) ) ) |