Metamath Proof Explorer
		
		
		
		Description:  If x is not free in ps , then it is not free in E. y ps .
       (Contributed by Mario Carneiro, 24-Sep-2016)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						nfald.1 | 
						⊢ Ⅎ 𝑦 𝜑  | 
					
					
						 | 
						 | 
						nfald.2 | 
						⊢ ( 𝜑  →  Ⅎ 𝑥 𝜓 )  | 
					
				
					 | 
					Assertion | 
					nfexd | 
					⊢  ( 𝜑  →  Ⅎ 𝑥 ∃ 𝑦 𝜓 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nfald.1 | 
							⊢ Ⅎ 𝑦 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							nfald.2 | 
							⊢ ( 𝜑  →  Ⅎ 𝑥 𝜓 )  | 
						
						
							| 3 | 
							
								
							 | 
							df-ex | 
							⊢ ( ∃ 𝑦 𝜓  ↔  ¬  ∀ 𝑦 ¬  𝜓 )  | 
						
						
							| 4 | 
							
								2
							 | 
							nfnd | 
							⊢ ( 𝜑  →  Ⅎ 𝑥 ¬  𝜓 )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							nfald | 
							⊢ ( 𝜑  →  Ⅎ 𝑥 ∀ 𝑦 ¬  𝜓 )  | 
						
						
							| 6 | 
							
								5
							 | 
							nfnd | 
							⊢ ( 𝜑  →  Ⅎ 𝑥 ¬  ∀ 𝑦 ¬  𝜓 )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							nfxfrd | 
							⊢ ( 𝜑  →  Ⅎ 𝑥 ∃ 𝑦 𝜓 )  |