Metamath Proof Explorer
Description: If x is not free in ps , then it is not free in E. y ps .
(Contributed by Mario Carneiro, 24-Sep-2016)
|
|
Ref |
Expression |
|
Hypotheses |
nfald.1 |
⊢ Ⅎ 𝑦 𝜑 |
|
|
nfald.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) |
|
Assertion |
nfexd |
⊢ ( 𝜑 → Ⅎ 𝑥 ∃ 𝑦 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfald.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
nfald.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) |
3 |
|
df-ex |
⊢ ( ∃ 𝑦 𝜓 ↔ ¬ ∀ 𝑦 ¬ 𝜓 ) |
4 |
2
|
nfnd |
⊢ ( 𝜑 → Ⅎ 𝑥 ¬ 𝜓 ) |
5 |
1 4
|
nfald |
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ¬ 𝜓 ) |
6 |
5
|
nfnd |
⊢ ( 𝜑 → Ⅎ 𝑥 ¬ ∀ 𝑦 ¬ 𝜓 ) |
7 |
3 6
|
nfxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 ∃ 𝑦 𝜓 ) |