Description: If x is not free in ps , then it is not free in E. y ps . (Contributed by Mario Carneiro, 24-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfald.1 | |- F/ y ph |
|
nfald.2 | |- ( ph -> F/ x ps ) |
||
Assertion | nfexd | |- ( ph -> F/ x E. y ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfald.1 | |- F/ y ph |
|
2 | nfald.2 | |- ( ph -> F/ x ps ) |
|
3 | df-ex | |- ( E. y ps <-> -. A. y -. ps ) |
|
4 | 2 | nfnd | |- ( ph -> F/ x -. ps ) |
5 | 1 4 | nfald | |- ( ph -> F/ x A. y -. ps ) |
6 | 5 | nfnd | |- ( ph -> F/ x -. A. y -. ps ) |
7 | 3 6 | nfxfrd | |- ( ph -> F/ x E. y ps ) |