Metamath Proof Explorer


Theorem nfexd

Description: If x is not free in ps , then it is not free in E. y ps . (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses nfald.1 yφ
nfald.2 φxψ
Assertion nfexd φxyψ

Proof

Step Hyp Ref Expression
1 nfald.1 yφ
2 nfald.2 φxψ
3 df-ex yψ¬y¬ψ
4 2 nfnd φx¬ψ
5 1 4 nfald φxy¬ψ
6 5 nfnd φx¬y¬ψ
7 3 6 nfxfrd φxyψ