| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axrepndlem1 | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( [ 𝑤  /  𝑥 ] 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑤  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 ) ) ) ) | 
						
							| 2 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 3 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑥 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 5 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 6 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 7 | 5 6 | nfan | ⊢ Ⅎ 𝑦 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 8 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 9 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 10 | 8 9 | nfan | ⊢ Ⅎ 𝑧 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 11 |  | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑤  /  𝑥 ] 𝜑 | 
						
							| 12 | 11 | a1i | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 [ 𝑤  /  𝑥 ] 𝜑 ) | 
						
							| 13 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑥 𝑧 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑧 ) | 
						
							| 15 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 17 | 14 16 | nfeqd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑧  =  𝑦 ) | 
						
							| 18 | 12 17 | nfimd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( [ 𝑤  /  𝑥 ] 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 19 | 10 18 | nfald | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∀ 𝑧 ( [ 𝑤  /  𝑥 ] 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 20 | 7 19 | nfexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∃ 𝑦 ∀ 𝑧 ( [ 𝑤  /  𝑥 ] 𝜑  →  𝑧  =  𝑦 ) ) | 
						
							| 21 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑤 ) | 
						
							| 22 | 14 21 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑧  ∈  𝑤 ) | 
						
							| 23 |  | nfv | ⊢ Ⅎ 𝑤 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 24 | 21 16 | nfeld | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑤  ∈  𝑦 ) | 
						
							| 25 | 7 12 | nfald | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 ) | 
						
							| 26 | 24 25 | nfand | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 ) ) | 
						
							| 27 | 23 26 | nfexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 ) ) | 
						
							| 28 | 22 27 | nfbid | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( 𝑧  ∈  𝑤  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 29 | 10 28 | nfald | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∀ 𝑧 ( 𝑧  ∈  𝑤  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 30 | 20 29 | nfimd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( [ 𝑤  /  𝑥 ] 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑤  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 ) ) ) ) | 
						
							| 31 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑦 𝑤 ) | 
						
							| 32 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 34 | 31 33 | nfeqd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑦 𝑤  =  𝑥 ) | 
						
							| 35 | 7 34 | nfan1 | ⊢ Ⅎ 𝑦 ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 ) | 
						
							| 36 |  | nfcvd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑧 𝑤 ) | 
						
							| 37 |  | nfcvf2 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑧 𝑥 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑧 𝑥 ) | 
						
							| 39 | 36 38 | nfeqd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑧 𝑤  =  𝑥 ) | 
						
							| 40 | 10 39 | nfan1 | ⊢ Ⅎ 𝑧 ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 ) | 
						
							| 41 |  | sbequ12r | ⊢ ( 𝑤  =  𝑥  →  ( [ 𝑤  /  𝑥 ] 𝜑  ↔  𝜑 ) ) | 
						
							| 42 | 41 | imbi1d | ⊢ ( 𝑤  =  𝑥  →  ( ( [ 𝑤  /  𝑥 ] 𝜑  →  𝑧  =  𝑦 )  ↔  ( 𝜑  →  𝑧  =  𝑦 ) ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ( [ 𝑤  /  𝑥 ] 𝜑  →  𝑧  =  𝑦 )  ↔  ( 𝜑  →  𝑧  =  𝑦 ) ) ) | 
						
							| 44 | 40 43 | albid | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∀ 𝑧 ( [ 𝑤  /  𝑥 ] 𝜑  →  𝑧  =  𝑦 )  ↔  ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 ) ) ) | 
						
							| 45 | 35 44 | exbid | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∃ 𝑦 ∀ 𝑧 ( [ 𝑤  /  𝑥 ] 𝜑  →  𝑧  =  𝑦 )  ↔  ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 ) ) ) | 
						
							| 46 |  | elequ2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑧  ∈  𝑤  ↔  𝑧  ∈  𝑥 ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( 𝑧  ∈  𝑤  ↔  𝑧  ∈  𝑥 ) ) | 
						
							| 48 |  | elequ1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  ∈  𝑦  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( 𝑤  ∈  𝑦  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 50 | 41 | adantl | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( [ 𝑤  /  𝑥 ] 𝜑  ↔  𝜑 ) ) | 
						
							| 51 | 35 50 | albid | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑  ↔  ∀ 𝑦 𝜑 ) ) | 
						
							| 52 | 49 51 | anbi12d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 )  ↔  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 53 | 52 | ex | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( 𝑤  =  𝑥  →  ( ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 )  ↔  ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) | 
						
							| 54 | 4 26 53 | cbvexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) | 
						
							| 56 | 47 55 | bibi12d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ( 𝑧  ∈  𝑤  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 ) )  ↔  ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) | 
						
							| 57 | 40 56 | albid | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∀ 𝑧 ( 𝑧  ∈  𝑤  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 ) )  ↔  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) | 
						
							| 58 | 45 57 | imbi12d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ( ∃ 𝑦 ∀ 𝑧 ( [ 𝑤  /  𝑥 ] 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑤  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 ) ) )  ↔  ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) ) | 
						
							| 59 | 58 | ex | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( 𝑤  =  𝑥  →  ( ( ∃ 𝑦 ∀ 𝑧 ( [ 𝑤  /  𝑥 ] 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑤  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 ) ) )  ↔  ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) ) ) | 
						
							| 60 | 4 30 59 | cbvexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( [ 𝑤  /  𝑥 ] 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑤  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑦  ∧  ∀ 𝑦 [ 𝑤  /  𝑥 ] 𝜑 ) ) )  ↔  ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) ) | 
						
							| 61 | 1 60 | imbitrid | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) ) | 
						
							| 62 | 61 | imp | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  ¬  ∀ 𝑦 𝑦  =  𝑧 )  →  ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑  →  𝑧  =  𝑦 )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑦 𝜑 ) ) ) ) |