Description: Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el and elirrv .) (Contributed by Scott Fenton, 15-Dec-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | distel | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | el | |
|
2 | df-ex | |
|
3 | nfnae | |
|
4 | dveel1 | |
|
5 | 3 4 | nf5d | |
6 | 5 | nfnd | |
7 | elequ2 | |
|
8 | 7 | notbid | |
9 | 8 | a1i | |
10 | 3 6 9 | cbvald | |
11 | 10 | notbid | |
12 | 2 11 | bitrid | |
13 | 1 12 | mpbii | |
14 | elirrv | |
|
15 | elequ1 | |
|
16 | 14 15 | mtbii | |
17 | 16 | alimi | |
18 | 17 | con3i | |
19 | 13 18 | impbii | |