Metamath Proof Explorer


Theorem distel

Description: Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el and elirrv .) (Contributed by Scott Fenton, 15-Dec-2010)

Ref Expression
Assertion distel ¬yy=x¬y¬xy

Proof

Step Hyp Ref Expression
1 el zxz
2 df-ex zxz¬z¬xz
3 nfnae y¬yy=x
4 dveel1 ¬yy=xxzyxz
5 3 4 nf5d ¬yy=xyxz
6 5 nfnd ¬yy=xy¬xz
7 elequ2 z=yxzxy
8 7 notbid z=y¬xz¬xy
9 8 a1i ¬yy=xz=y¬xz¬xy
10 3 6 9 cbvald ¬yy=xz¬xzy¬xy
11 10 notbid ¬yy=x¬z¬xz¬y¬xy
12 2 11 bitrid ¬yy=xzxz¬y¬xy
13 1 12 mpbii ¬yy=x¬y¬xy
14 elirrv ¬yy
15 elequ1 y=xyyxy
16 14 15 mtbii y=x¬xy
17 16 alimi yy=xy¬xy
18 17 con3i ¬y¬xy¬yy=x
19 13 18 impbii ¬yy=x¬y¬xy