| Step |
Hyp |
Ref |
Expression |
| 1 |
|
biimpr |
|
| 2 |
1
|
alimi |
|
| 3 |
|
elequ1 |
|
| 4 |
3
|
equsalvw |
|
| 5 |
2 4
|
sylib |
|
| 6 |
3
|
equsexvw |
|
| 7 |
|
exsimpr |
|
| 8 |
6 7
|
sylbir |
|
| 9 |
|
ax-reg |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
elequ1 |
|
| 12 |
|
elequ1 |
|
| 13 |
12
|
notbid |
|
| 14 |
11 13
|
imbi12d |
|
| 15 |
14
|
spvv |
|
| 16 |
|
con2 |
|
| 17 |
16
|
com12 |
|
| 18 |
17
|
anim2d |
|
| 19 |
15 18
|
sylan2i |
|
| 20 |
19
|
eximdv |
|
| 21 |
10 20
|
mpd |
|
| 22 |
|
19.29 |
|
| 23 |
|
biimp |
|
| 24 |
23
|
anim1d |
|
| 25 |
|
ax9v2 |
|
| 26 |
25
|
equcoms |
|
| 27 |
26
|
con3dimp |
|
| 28 |
24 27
|
syl6 |
|
| 29 |
28
|
imp |
|
| 30 |
29
|
exlimiv |
|
| 31 |
22 30
|
syl |
|
| 32 |
21 31
|
sylan2 |
|
| 33 |
5 32
|
mpdan |
|
| 34 |
|
el |
|
| 35 |
4
|
biimpri |
|
| 36 |
34 35
|
eximii |
|
| 37 |
36
|
sepexi |
|
| 38 |
33 37
|
exlimiiv |
|