Metamath Proof Explorer


Theorem zfregcl

Description: The Axiom of Regularity with class variables. (Contributed by NM, 5-Aug-1994) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021)

Ref Expression
Assertion zfregcl AVxxAxAyx¬yA

Proof

Step Hyp Ref Expression
1 eleq2 z=AxzxA
2 1 exbidv z=AxxzxxA
3 eleq2 z=AyzyA
4 3 notbid z=A¬yz¬yA
5 4 ralbidv z=Ayx¬yzyx¬yA
6 5 rexeqbi1dv z=Axzyx¬yzxAyx¬yA
7 2 6 imbi12d z=Axxzxzyx¬yzxxAxAyx¬yA
8 nfre1 xxzyx¬yz
9 axreg2 xzxxzyyx¬yz
10 df-ral yx¬yzyyx¬yz
11 10 rexbii xzyx¬yzxzyyx¬yz
12 df-rex xzyyx¬yzxxzyyx¬yz
13 11 12 bitr2i xxzyyx¬yzxzyx¬yz
14 9 13 sylib xzxzyx¬yz
15 8 14 exlimi xxzxzyx¬yz
16 7 15 vtoclg AVxxAxAyx¬yA