Metamath Proof Explorer


Theorem zfregfr

Description: The membership relation is well-founded on any class. (Contributed by NM, 26-Nov-1995)

Ref Expression
Assertion zfregfr EFrA

Proof

Step Hyp Ref Expression
1 dfepfr EFrAxxAxyxxy=
2 vex xV
3 zfreg xVxyxyx=
4 2 3 mpan xyxyx=
5 incom yx=xy
6 5 eqeq1i yx=xy=
7 6 rexbii yxyx=yxxy=
8 4 7 sylib xyxxy=
9 8 adantl xAxyxxy=
10 1 9 mpgbir EFrA