Step |
Hyp |
Ref |
Expression |
1 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑥 |
2 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑦 |
3 |
1 2
|
nfan |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) |
4 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑧 𝑥 ) |
5 |
4
|
adantr |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 𝑥 ) |
6 |
5
|
nfcrd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 𝑤 ∈ 𝑥 ) |
7 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 𝑦 ) |
8 |
7
|
adantl |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 𝑦 ) |
9 |
8
|
nfcrd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 𝑤 ∈ 𝑦 ) |
10 |
6 9
|
nfbid |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ) |
11 |
|
elequ1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) |
12 |
|
elequ1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦 ) ) |
13 |
11 12
|
bibi12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) |
14 |
13
|
a1i |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) ) |
15 |
3 10 14
|
cbvald |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) ) |
16 |
|
axextg |
⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦 ) → 𝑥 = 𝑦 ) |
17 |
15 16
|
syl6bir |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) |