Metamath Proof Explorer


Theorem axextdist

Description: ax-ext with distinctors instead of distinct variable restrictions. (Contributed by Scott Fenton, 13-Dec-2010)

Ref Expression
Assertion axextdist ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∀ 𝑧 ( 𝑧𝑥𝑧𝑦 ) → 𝑥 = 𝑦 ) )

Proof

Step Hyp Ref Expression
1 nfnae 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑥
2 nfnae 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑦
3 1 2 nfan 𝑧 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 )
4 nfcvf ( ¬ ∀ 𝑧 𝑧 = 𝑥 𝑧 𝑥 )
5 4 adantr ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → 𝑧 𝑥 )
6 5 nfcrd ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 𝑤𝑥 )
7 nfcvf ( ¬ ∀ 𝑧 𝑧 = 𝑦 𝑧 𝑦 )
8 7 adantl ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → 𝑧 𝑦 )
9 8 nfcrd ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 𝑤𝑦 )
10 6 9 nfbid ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → Ⅎ 𝑧 ( 𝑤𝑥𝑤𝑦 ) )
11 elequ1 ( 𝑤 = 𝑧 → ( 𝑤𝑥𝑧𝑥 ) )
12 elequ1 ( 𝑤 = 𝑧 → ( 𝑤𝑦𝑧𝑦 ) )
13 11 12 bibi12d ( 𝑤 = 𝑧 → ( ( 𝑤𝑥𝑤𝑦 ) ↔ ( 𝑧𝑥𝑧𝑦 ) ) )
14 13 a1i ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( 𝑤 = 𝑧 → ( ( 𝑤𝑥𝑤𝑦 ) ↔ ( 𝑧𝑥𝑧𝑦 ) ) ) )
15 3 10 14 cbvald ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∀ 𝑤 ( 𝑤𝑥𝑤𝑦 ) ↔ ∀ 𝑧 ( 𝑧𝑥𝑧𝑦 ) ) )
16 axextg ( ∀ 𝑤 ( 𝑤𝑥𝑤𝑦 ) → 𝑥 = 𝑦 )
17 15 16 syl6bir ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ) → ( ∀ 𝑧 ( 𝑧𝑥𝑧𝑦 ) → 𝑥 = 𝑦 ) )