| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑧 𝑧  =  𝑥 | 
						
							| 2 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑧 𝑧  =  𝑦 | 
						
							| 3 | 1 2 | nfan | ⊢ Ⅎ 𝑧 ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 ) | 
						
							| 4 |  | nfcvf | ⊢ ( ¬  ∀ 𝑧 𝑧  =  𝑥  →  Ⅎ 𝑧 𝑥 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  Ⅎ 𝑧 𝑥 ) | 
						
							| 6 | 5 | nfcrd | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  Ⅎ 𝑧 𝑤  ∈  𝑥 ) | 
						
							| 7 |  | nfcvf | ⊢ ( ¬  ∀ 𝑧 𝑧  =  𝑦  →  Ⅎ 𝑧 𝑦 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  Ⅎ 𝑧 𝑦 ) | 
						
							| 9 | 8 | nfcrd | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  Ⅎ 𝑧 𝑤  ∈  𝑦 ) | 
						
							| 10 | 6 9 | nfbid | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  Ⅎ 𝑧 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑦 ) ) | 
						
							| 11 |  | elequ1 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑤  ∈  𝑥  ↔  𝑧  ∈  𝑥 ) ) | 
						
							| 12 |  | elequ1 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑤  ∈  𝑦  ↔  𝑧  ∈  𝑦 ) ) | 
						
							| 13 | 11 12 | bibi12d | ⊢ ( 𝑤  =  𝑧  →  ( ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑦 )  ↔  ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 ) ) ) | 
						
							| 14 | 13 | a1i | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  ( 𝑤  =  𝑧  →  ( ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑦 )  ↔  ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 ) ) ) ) | 
						
							| 15 | 3 10 14 | cbvald | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  ( ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑦 )  ↔  ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 ) ) ) | 
						
							| 16 |  | axextg | ⊢ ( ∀ 𝑤 ( 𝑤  ∈  𝑥  ↔  𝑤  ∈  𝑦 )  →  𝑥  =  𝑦 ) | 
						
							| 17 | 15 16 | biimtrrdi | ⊢ ( ( ¬  ∀ 𝑧 𝑧  =  𝑥  ∧  ¬  ∀ 𝑧 𝑧  =  𝑦 )  →  ( ∀ 𝑧 ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  𝑦 )  →  𝑥  =  𝑦 ) ) |