Metamath Proof Explorer


Theorem axfrege52a

Description: Justification for ax-frege52a . (Contributed by RP, 17-Apr-2020)

Ref Expression
Assertion axfrege52a φψif-φθχif-ψθχ

Proof

Step Hyp Ref Expression
1 ifpbi1 φψif-φθχif-ψθχ
2 1 biimpd φψif-φθχif-ψθχ