Metamath Proof Explorer


Theorem ifpbi1

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion ifpbi1 φψif-φχθif-ψχθ

Proof

Step Hyp Ref Expression
1 imbi1 φψφχψχ
2 notbi φψ¬φ¬ψ
3 2 biimpi φψ¬φ¬ψ
4 3 imbi1d φψ¬φθ¬ψθ
5 1 4 anbi12d φψφχ¬φθψχ¬ψθ
6 dfifp2 if-φχθφχ¬φθ
7 dfifp2 if-ψχθψχ¬ψθ
8 5 6 7 3bitr4g φψif-φχθif-ψχθ