Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
Additional work on conditional logical operator
ifpbi1
Next ⟩
ifpnot23
Metamath Proof Explorer
Ascii
Unicode
Theorem
ifpbi1
Description:
Equivalence theorem for conditional logical operators.
(Contributed by
RP
, 14-Apr-2020)
Ref
Expression
Assertion
ifpbi1
⊢
φ
↔
ψ
→
if-
φ
χ
θ
↔
if-
ψ
χ
θ
Proof
Step
Hyp
Ref
Expression
1
imbi1
⊢
φ
↔
ψ
→
φ
→
χ
↔
ψ
→
χ
2
notbi
⊢
φ
↔
ψ
↔
¬
φ
↔
¬
ψ
3
2
biimpi
⊢
φ
↔
ψ
→
¬
φ
↔
¬
ψ
4
3
imbi1d
⊢
φ
↔
ψ
→
¬
φ
→
θ
↔
¬
ψ
→
θ
5
1
4
anbi12d
⊢
φ
↔
ψ
→
φ
→
χ
∧
¬
φ
→
θ
↔
ψ
→
χ
∧
¬
ψ
→
θ
6
dfifp2
⊢
if-
φ
χ
θ
↔
φ
→
χ
∧
¬
φ
→
θ
7
dfifp2
⊢
if-
ψ
χ
θ
↔
ψ
→
χ
∧
¬
ψ
→
θ
8
5
6
7
3bitr4g
⊢
φ
↔
ψ
→
if-
φ
χ
θ
↔
if-
ψ
χ
θ