Step |
Hyp |
Ref |
Expression |
1 |
|
imbi1 |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜑 → 𝜒 ) ↔ ( 𝜓 → 𝜒 ) ) ) |
2 |
|
notbi |
⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
3 |
2
|
biimpi |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
4 |
3
|
imbi1d |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( ¬ 𝜑 → 𝜃 ) ↔ ( ¬ 𝜓 → 𝜃 ) ) ) |
5 |
1 4
|
anbi12d |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( ( 𝜑 → 𝜒 ) ∧ ( ¬ 𝜑 → 𝜃 ) ) ↔ ( ( 𝜓 → 𝜒 ) ∧ ( ¬ 𝜓 → 𝜃 ) ) ) ) |
6 |
|
dfifp2 |
⊢ ( if- ( 𝜑 , 𝜒 , 𝜃 ) ↔ ( ( 𝜑 → 𝜒 ) ∧ ( ¬ 𝜑 → 𝜃 ) ) ) |
7 |
|
dfifp2 |
⊢ ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ ( ( 𝜓 → 𝜒 ) ∧ ( ¬ 𝜓 → 𝜃 ) ) ) |
8 |
5 6 7
|
3bitr4g |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( if- ( 𝜑 , 𝜒 , 𝜃 ) ↔ if- ( 𝜓 , 𝜒 , 𝜃 ) ) ) |