Metamath Proof Explorer


Theorem ifpbi1

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion ifpbi1 ( ( 𝜑𝜓 ) → ( if- ( 𝜑 , 𝜒 , 𝜃 ) ↔ if- ( 𝜓 , 𝜒 , 𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 imbi1 ( ( 𝜑𝜓 ) → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜒 ) ) )
2 notbi ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
3 2 biimpi ( ( 𝜑𝜓 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
4 3 imbi1d ( ( 𝜑𝜓 ) → ( ( ¬ 𝜑𝜃 ) ↔ ( ¬ 𝜓𝜃 ) ) )
5 1 4 anbi12d ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜒 ) ∧ ( ¬ 𝜑𝜃 ) ) ↔ ( ( 𝜓𝜒 ) ∧ ( ¬ 𝜓𝜃 ) ) ) )
6 dfifp2 ( if- ( 𝜑 , 𝜒 , 𝜃 ) ↔ ( ( 𝜑𝜒 ) ∧ ( ¬ 𝜑𝜃 ) ) )
7 dfifp2 ( if- ( 𝜓 , 𝜒 , 𝜃 ) ↔ ( ( 𝜓𝜒 ) ∧ ( ¬ 𝜓𝜃 ) ) )
8 5 6 7 3bitr4g ( ( 𝜑𝜓 ) → ( if- ( 𝜑 , 𝜒 , 𝜃 ) ↔ if- ( 𝜓 , 𝜒 , 𝜃 ) ) )