Metamath Proof Explorer


Theorem ifpbi1

Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020)

Ref Expression
Assertion ifpbi1
|- ( ( ph <-> ps ) -> ( if- ( ph , ch , th ) <-> if- ( ps , ch , th ) ) )

Proof

Step Hyp Ref Expression
1 imbi1
 |-  ( ( ph <-> ps ) -> ( ( ph -> ch ) <-> ( ps -> ch ) ) )
2 notbi
 |-  ( ( ph <-> ps ) <-> ( -. ph <-> -. ps ) )
3 2 biimpi
 |-  ( ( ph <-> ps ) -> ( -. ph <-> -. ps ) )
4 3 imbi1d
 |-  ( ( ph <-> ps ) -> ( ( -. ph -> th ) <-> ( -. ps -> th ) ) )
5 1 4 anbi12d
 |-  ( ( ph <-> ps ) -> ( ( ( ph -> ch ) /\ ( -. ph -> th ) ) <-> ( ( ps -> ch ) /\ ( -. ps -> th ) ) ) )
6 dfifp2
 |-  ( if- ( ph , ch , th ) <-> ( ( ph -> ch ) /\ ( -. ph -> th ) ) )
7 dfifp2
 |-  ( if- ( ps , ch , th ) <-> ( ( ps -> ch ) /\ ( -. ps -> th ) ) )
8 5 6 7 3bitr4g
 |-  ( ( ph <-> ps ) -> ( if- ( ph , ch , th ) <-> if- ( ps , ch , th ) ) )