Step |
Hyp |
Ref |
Expression |
1 |
|
ianor |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |
2 |
|
pm4.55 |
⊢ ( ¬ ( ¬ 𝜑 ∧ 𝜒 ) ↔ ( 𝜑 ∨ ¬ 𝜒 ) ) |
3 |
1 2
|
anbi12i |
⊢ ( ( ¬ ( 𝜑 ∧ 𝜓 ) ∧ ¬ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ∧ ( 𝜑 ∨ ¬ 𝜒 ) ) ) |
4 |
|
ioran |
⊢ ( ¬ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ ( ¬ ( 𝜑 ∧ 𝜓 ) ∧ ¬ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
5 |
|
dfifp4 |
⊢ ( if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜒 ) ↔ ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ∧ ( 𝜑 ∨ ¬ 𝜒 ) ) ) |
6 |
3 4 5
|
3bitr4i |
⊢ ( ¬ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜒 ) ) |
7 |
|
df-ifp |
⊢ ( if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
8 |
6 7
|
xchnxbir |
⊢ ( ¬ if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜒 ) ) |