Metamath Proof Explorer


Theorem ifpnotnotb

Description: Factor conditional logic operator over negation in terms 2 and 3. (Contributed by RP, 21-Apr-2020)

Ref Expression
Assertion ifpnotnotb ( if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜒 ) ↔ ¬ if- ( 𝜑 , 𝜓 , 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ifpnot23 ( ¬ if- ( 𝜑 , 𝜓 , 𝜒 ) ↔ if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜒 ) )
2 1 bicomi ( if- ( 𝜑 , ¬ 𝜓 , ¬ 𝜒 ) ↔ ¬ if- ( 𝜑 , 𝜓 , 𝜒 ) )