Metamath Proof Explorer


Theorem ifpnot23

Description: Negation of conditional logical operator. (Contributed by RP, 18-Apr-2020)

Ref Expression
Assertion ifpnot23 ¬if-φψχif-φ¬ψ¬χ

Proof

Step Hyp Ref Expression
1 ianor ¬φψ¬φ¬ψ
2 pm4.55 ¬¬φχφ¬χ
3 1 2 anbi12i ¬φψ¬¬φχ¬φ¬ψφ¬χ
4 ioran ¬φψ¬φχ¬φψ¬¬φχ
5 dfifp4 if-φ¬ψ¬χ¬φ¬ψφ¬χ
6 3 4 5 3bitr4i ¬φψ¬φχif-φ¬ψ¬χ
7 df-ifp if-φψχφψ¬φχ
8 6 7 xchnxbir ¬if-φψχif-φ¬ψ¬χ