Metamath Proof Explorer


Theorem ifpnot23

Description: Negation of conditional logical operator. (Contributed by RP, 18-Apr-2020)

Ref Expression
Assertion ifpnot23 ¬ if- φ ψ χ if- φ ¬ ψ ¬ χ

Proof

Step Hyp Ref Expression
1 ianor ¬ φ ψ ¬ φ ¬ ψ
2 pm4.55 ¬ ¬ φ χ φ ¬ χ
3 1 2 anbi12i ¬ φ ψ ¬ ¬ φ χ ¬ φ ¬ ψ φ ¬ χ
4 ioran ¬ φ ψ ¬ φ χ ¬ φ ψ ¬ ¬ φ χ
5 dfifp4 if- φ ¬ ψ ¬ χ ¬ φ ¬ ψ φ ¬ χ
6 3 4 5 3bitr4i ¬ φ ψ ¬ φ χ if- φ ¬ ψ ¬ χ
7 df-ifp if- φ ψ χ φ ψ ¬ φ χ
8 6 7 xchnxbir ¬ if- φ ψ χ if- φ ¬ ψ ¬ χ