Metamath Proof Explorer


Theorem axfrege52a

Description: Justification for ax-frege52a . (Contributed by RP, 17-Apr-2020)

Ref Expression
Assertion axfrege52a ( ( 𝜑𝜓 ) → ( if- ( 𝜑 , 𝜃 , 𝜒 ) → if- ( 𝜓 , 𝜃 , 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 ifpbi1 ( ( 𝜑𝜓 ) → ( if- ( 𝜑 , 𝜃 , 𝜒 ) ↔ if- ( 𝜓 , 𝜃 , 𝜒 ) ) )
2 1 biimpd ( ( 𝜑𝜓 ) → ( if- ( 𝜑 , 𝜃 , 𝜒 ) → if- ( 𝜓 , 𝜃 , 𝜒 ) ) )