Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Propositions from _Begriffsschrift_
_Begriffsschrift_ Chapter II with equivalence of sets
axfrege52c
Next ⟩
ax-frege52c
Metamath Proof Explorer
Ascii
Unicode
Theorem
axfrege52c
Description:
Justification for
ax-frege52c
.
(Contributed by
RP
, 24-Dec-2019)
Ref
Expression
Assertion
axfrege52c
⊢
A
=
B
→
[
˙
A
/
x
]
˙
φ
→
[
˙
B
/
x
]
˙
φ
Proof
Step
Hyp
Ref
Expression
1
dfsbcq
⊢
A
=
B
→
[
˙
A
/
x
]
˙
φ
↔
[
˙
B
/
x
]
˙
φ
2
1
biimpd
⊢
A
=
B
→
[
˙
A
/
x
]
˙
φ
→
[
˙
B
/
x
]
˙
φ