Description: Justification for ax-frege52c . (Contributed by RP, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axfrege52c | ⊢ ( 𝐴 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐵 / 𝑥 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq | ⊢ ( 𝐴 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑥 ] 𝜑 ) ) | |
| 2 | 1 | biimpd | ⊢ ( 𝐴 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐵 / 𝑥 ] 𝜑 ) ) |