Metamath Proof Explorer


Axiom ax-frege52c

Description: One side of dfsbcq . Part of Axiom 52 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (New usage is discouraged.)

Ref Expression
Assertion ax-frege52c ( 𝐴 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐵 / 𝑥 ] 𝜑 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cB 𝐵
2 0 1 wceq 𝐴 = 𝐵
3 vx 𝑥
4 wph 𝜑
5 4 3 0 wsbc [ 𝐴 / 𝑥 ] 𝜑
6 4 3 1 wsbc [ 𝐵 / 𝑥 ] 𝜑
7 5 6 wi ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐵 / 𝑥 ] 𝜑 )
8 2 7 wi ( 𝐴 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐵 / 𝑥 ] 𝜑 ) )