Metamath Proof Explorer
Description: One side of dfsbcq . Part of Axiom 52 of Frege1879 p. 50.
(Contributed by RP, 24-Dec-2019) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
ax-frege52c |
⊢ ( 𝐴 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐵 / 𝑥 ] 𝜑 ) ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cA |
⊢ 𝐴 |
1 |
|
cB |
⊢ 𝐵 |
2 |
0 1
|
wceq |
⊢ 𝐴 = 𝐵 |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
wph |
⊢ 𝜑 |
5 |
4 3 0
|
wsbc |
⊢ [ 𝐴 / 𝑥 ] 𝜑 |
6 |
4 3 1
|
wsbc |
⊢ [ 𝐵 / 𝑥 ] 𝜑 |
7 |
5 6
|
wi |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐵 / 𝑥 ] 𝜑 ) |
8 |
2 7
|
wi |
⊢ ( 𝐴 = 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐵 / 𝑥 ] 𝜑 ) ) |