Metamath Proof Explorer


Axiom ax-frege52c

Description: One side of dfsbcq . Part of Axiom 52 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (New usage is discouraged.)

Ref Expression
Assertion ax-frege52c A = B [˙A / x]˙ φ [˙B / x]˙ φ

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 cB class B
2 0 1 wceq wff A = B
3 vx setvar x
4 wph wff φ
5 4 3 0 wsbc wff [˙A / x]˙ φ
6 4 3 1 wsbc wff [˙B / x]˙ φ
7 5 6 wi wff [˙A / x]˙ φ [˙B / x]˙ φ
8 2 7 wi wff A = B [˙A / x]˙ φ [˙B / x]˙ φ