Metamath Proof Explorer


Axiom ax-frege52c

Description: One side of dfsbcq . Part of Axiom 52 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (New usage is discouraged.)

Ref Expression
Assertion ax-frege52c A=B[˙A/x]˙φ[˙B/x]˙φ

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 cB classB
2 0 1 wceq wffA=B
3 vx setvarx
4 wph wffφ
5 4 3 0 wsbc wff[˙A/x]˙φ
6 4 3 1 wsbc wff[˙B/x]˙φ
7 5 6 wi wff[˙A/x]˙φ[˙B/x]˙φ
8 2 7 wi wffA=B[˙A/x]˙φ[˙B/x]˙φ