Description: One side of dfsbcq . Part of Axiom 52 of Frege1879 p. 50. (Contributed by RP, 24-Dec-2019) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-frege52c | |- ( A = B -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cA | |- A |
|
1 | cB | |- B |
|
2 | 0 1 | wceq | |- A = B |
3 | vx | |- x |
|
4 | wph | |- ph |
|
5 | 4 3 0 | wsbc | |- [. A / x ]. ph |
6 | 4 3 1 | wsbc | |- [. B / x ]. ph |
7 | 5 6 | wi | |- ( [. A / x ]. ph -> [. B / x ]. ph ) |
8 | 2 7 | wi | |- ( A = B -> ( [. A / x ]. ph -> [. B / x ]. ph ) ) |