Metamath Proof Explorer


Theorem axfrege58a

Description: Identical to anifp . Justification for ax-frege58a . (Contributed by RP, 28-Mar-2020)

Ref Expression
Assertion axfrege58a ψ χ if- φ ψ χ

Proof

Step Hyp Ref Expression
1 anifp ψ χ if- φ ψ χ