Metamath Proof Explorer


Theorem axfrege58a

Description: Identical to anifp . Justification for ax-frege58a . (Contributed by RP, 28-Mar-2020)

Ref Expression
Assertion axfrege58a ( ( 𝜓𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) )

Proof

Step Hyp Ref Expression
1 anifp ( ( 𝜓𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) )