Description: If A. x ph is affirmed, [ y / x ] ph cannot be denied. Identical to stdpc4 . Axiom 58 of Frege1879 p. 51. (Contributed by RP, 28-Mar-2020) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-frege58a | ⊢ ( ( 𝜓 ∧ 𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | wps | ⊢ 𝜓 | |
1 | wch | ⊢ 𝜒 | |
2 | 0 1 | wa | ⊢ ( 𝜓 ∧ 𝜒 ) |
3 | wph | ⊢ 𝜑 | |
4 | 3 0 1 | wif | ⊢ if- ( 𝜑 , 𝜓 , 𝜒 ) |
5 | 2 4 | wi | ⊢ ( ( 𝜓 ∧ 𝜒 ) → if- ( 𝜑 , 𝜓 , 𝜒 ) ) |