Description: If A. x ph is affirmed, [ y / x ] ph cannot be denied. Identical to stdpc4 . Axiom 58 of Frege1879 p. 51. (Contributed by RP, 28-Mar-2020) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-frege58a | |- ( ( ps /\ ch ) -> if- ( ph , ps , ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | wps | |- ps |
|
1 | wch | |- ch |
|
2 | 0 1 | wa | |- ( ps /\ ch ) |
3 | wph | |- ph |
|
4 | 3 0 1 | wif | |- if- ( ph , ps , ch ) |
5 | 2 4 | wi | |- ( ( ps /\ ch ) -> if- ( ph , ps , ch ) ) |