Metamath Proof Explorer


Theorem frege58acor

Description: Lemma for frege59a . (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege58acor
|- ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> ( if- ( ph , ps , th ) -> if- ( ph , ch , ta ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege58a
 |-  ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> if- ( ph , ( ps -> ch ) , ( th -> ta ) ) )
2 ifpimim
 |-  ( if- ( ph , ( ps -> ch ) , ( th -> ta ) ) -> ( if- ( ph , ps , th ) -> if- ( ph , ch , ta ) ) )
3 1 2 syl
 |-  ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> ( if- ( ph , ps , th ) -> if- ( ph , ch , ta ) ) )