Description: Lemma for frege59a . (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege58acor | |- ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> ( if- ( ph , ps , th ) -> if- ( ph , ch , ta ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege58a | |- ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> if- ( ph , ( ps -> ch ) , ( th -> ta ) ) ) |
|
2 | ifpimim | |- ( if- ( ph , ( ps -> ch ) , ( th -> ta ) ) -> ( if- ( ph , ps , th ) -> if- ( ph , ch , ta ) ) ) |
|
3 | 1 2 | syl | |- ( ( ( ps -> ch ) /\ ( th -> ta ) ) -> ( if- ( ph , ps , th ) -> if- ( ph , ch , ta ) ) ) |