Metamath Proof Explorer


Theorem frege58acor

Description: Lemma for frege59a . (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege58acor ( ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege58a ( ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) → if- ( 𝜑 , ( 𝜓𝜒 ) , ( 𝜃𝜏 ) ) )
2 ifpimim ( if- ( 𝜑 , ( 𝜓𝜒 ) , ( 𝜃𝜏 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) )
3 1 2 syl ( ( ( 𝜓𝜒 ) ∧ ( 𝜃𝜏 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) )