Description: Lemma for frege59a . (Contributed by RP, 17-Apr-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege58acor | ⊢ ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜏 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege58a | ⊢ ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜏 ) ) → if- ( 𝜑 , ( 𝜓 → 𝜒 ) , ( 𝜃 → 𝜏 ) ) ) | |
2 | ifpimim | ⊢ ( if- ( 𝜑 , ( 𝜓 → 𝜒 ) , ( 𝜃 → 𝜏 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) | |
3 | 1 2 | syl | ⊢ ( ( ( 𝜓 → 𝜒 ) ∧ ( 𝜃 → 𝜏 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |