Step |
Hyp |
Ref |
Expression |
1 |
|
pm2.521 |
⊢ ( ¬ ( ¬ 𝜑 → 𝜑 ) → ( 𝜑 → ¬ 𝜑 ) ) |
2 |
1
|
orim1i |
⊢ ( ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) → ( ( 𝜑 → ¬ 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ) |
3 |
2
|
adantr |
⊢ ( ( ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) → ( ( 𝜑 → ¬ 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ) |
4 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
5 |
4
|
orci |
⊢ ( ( 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) |
6 |
5
|
a1i |
⊢ ( ( ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) → ( ( 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) |
7 |
3 6
|
jca |
⊢ ( ( ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) → ( ( ( 𝜑 → ¬ 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ) |
8 |
4
|
orci |
⊢ ( ( 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜏 ) ) |
9 |
8
|
a1i |
⊢ ( ( ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) → ( ( 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜏 ) ) ) |
10 |
|
simpr |
⊢ ( ( ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) → ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) |
11 |
9 10
|
jca |
⊢ ( ( ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) → ( ( ( 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜏 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) ) |
12 |
7 11
|
jca |
⊢ ( ( ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) → ( ( ( ( 𝜑 → ¬ 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ∧ ( ( ( 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜏 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) ) ) |
13 |
|
pm4.81 |
⊢ ( ( ¬ 𝜑 → 𝜑 ) ↔ 𝜑 ) |
14 |
13
|
bicomi |
⊢ ( 𝜑 ↔ ( ¬ 𝜑 → 𝜑 ) ) |
15 |
|
ifpbi1 |
⊢ ( ( 𝜑 ↔ ( ¬ 𝜑 → 𝜑 ) ) → ( if- ( 𝜑 , ( 𝜓 → 𝜒 ) , ( 𝜃 → 𝜏 ) ) ↔ if- ( ( ¬ 𝜑 → 𝜑 ) , ( 𝜓 → 𝜒 ) , ( 𝜃 → 𝜏 ) ) ) ) |
16 |
14 15
|
ax-mp |
⊢ ( if- ( 𝜑 , ( 𝜓 → 𝜒 ) , ( 𝜃 → 𝜏 ) ) ↔ if- ( ( ¬ 𝜑 → 𝜑 ) , ( 𝜓 → 𝜒 ) , ( 𝜃 → 𝜏 ) ) ) |
17 |
|
dfifp4 |
⊢ ( if- ( ( ¬ 𝜑 → 𝜑 ) , ( 𝜓 → 𝜒 ) , ( 𝜃 → 𝜏 ) ) ↔ ( ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) ) |
18 |
16 17
|
bitri |
⊢ ( if- ( 𝜑 , ( 𝜓 → 𝜒 ) , ( 𝜃 → 𝜏 ) ) ↔ ( ( ¬ ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) ) |
19 |
|
ifpim123g |
⊢ ( ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ↔ ( ( ( ( 𝜑 → ¬ 𝜑 ) ∨ ( 𝜓 → 𝜒 ) ) ∧ ( ( 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ∧ ( ( ( 𝜑 → 𝜑 ) ∨ ( 𝜓 → 𝜏 ) ) ∧ ( ( ¬ 𝜑 → 𝜑 ) ∨ ( 𝜃 → 𝜏 ) ) ) ) ) |
20 |
12 18 19
|
3imtr4i |
⊢ ( if- ( 𝜑 , ( 𝜓 → 𝜒 ) , ( 𝜃 → 𝜏 ) ) → ( if- ( 𝜑 , 𝜓 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜏 ) ) ) |