Step |
Hyp |
Ref |
Expression |
1 |
|
dfifp4 |
⊢ ( if- ( 𝜑 , 𝜒 , 𝜏 ) ↔ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ) |
2 |
|
dfifp4 |
⊢ ( if- ( 𝜓 , 𝜃 , 𝜂 ) ↔ ( ( ¬ 𝜓 ∨ 𝜃 ) ∧ ( 𝜓 ∨ 𝜂 ) ) ) |
3 |
1 2
|
imbi12i |
⊢ ( ( if- ( 𝜑 , 𝜒 , 𝜏 ) → if- ( 𝜓 , 𝜃 , 𝜂 ) ) ↔ ( ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) → ( ( ¬ 𝜓 ∨ 𝜃 ) ∧ ( 𝜓 ∨ 𝜂 ) ) ) ) |
4 |
|
imor |
⊢ ( ( ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) → ( ( ¬ 𝜓 ∨ 𝜃 ) ∧ ( 𝜓 ∨ 𝜂 ) ) ) ↔ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( ( ¬ 𝜓 ∨ 𝜃 ) ∧ ( 𝜓 ∨ 𝜂 ) ) ) ) |
5 |
|
ordi |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( ( ¬ 𝜓 ∨ 𝜃 ) ∧ ( 𝜓 ∨ 𝜂 ) ) ) ↔ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( ¬ 𝜓 ∨ 𝜃 ) ) ∧ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( 𝜓 ∨ 𝜂 ) ) ) ) |
6 |
|
orass |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ¬ 𝜓 ) ∨ 𝜃 ) ↔ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( ¬ 𝜓 ∨ 𝜃 ) ) ) |
7 |
|
ianor |
⊢ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ↔ ( ¬ ( ¬ 𝜑 ∨ 𝜒 ) ∨ ¬ ( 𝜑 ∨ 𝜏 ) ) ) |
8 |
|
pm4.52 |
⊢ ( ( 𝜑 ∧ ¬ 𝜒 ) ↔ ¬ ( ¬ 𝜑 ∨ 𝜒 ) ) |
9 |
8
|
bicomi |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜒 ) ↔ ( 𝜑 ∧ ¬ 𝜒 ) ) |
10 |
|
ioran |
⊢ ( ¬ ( 𝜑 ∨ 𝜏 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜏 ) ) |
11 |
9 10
|
orbi12i |
⊢ ( ( ¬ ( ¬ 𝜑 ∨ 𝜒 ) ∨ ¬ ( 𝜑 ∨ 𝜏 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝜒 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜏 ) ) ) |
12 |
|
cases2 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜒 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜏 ) ) ↔ ( ( 𝜑 → ¬ 𝜒 ) ∧ ( ¬ 𝜑 → ¬ 𝜏 ) ) ) |
13 |
|
imor |
⊢ ( ( 𝜑 → ¬ 𝜒 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) |
14 |
|
pm4.66 |
⊢ ( ( ¬ 𝜑 → ¬ 𝜏 ) ↔ ( 𝜑 ∨ ¬ 𝜏 ) ) |
15 |
13 14
|
anbi12i |
⊢ ( ( ( 𝜑 → ¬ 𝜒 ) ∧ ( ¬ 𝜑 → ¬ 𝜏 ) ) ↔ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ) |
16 |
12 15
|
bitri |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜒 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜏 ) ) ↔ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ) |
17 |
7 11 16
|
3bitri |
⊢ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ↔ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ) |
18 |
17
|
orbi1i |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ¬ 𝜓 ) ↔ ( ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ∨ ¬ 𝜓 ) ) |
19 |
|
orcom |
⊢ ( ( ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ∨ ¬ 𝜓 ) ↔ ( ¬ 𝜓 ∨ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ) |
20 |
|
ordi |
⊢ ( ( ¬ 𝜓 ∨ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ↔ ( ( ¬ 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ∧ ( ¬ 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ) |
21 |
19 20
|
bitri |
⊢ ( ( ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ∨ ¬ 𝜓 ) ↔ ( ( ¬ 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ∧ ( ¬ 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ) |
22 |
|
orass |
⊢ ( ( ( ¬ 𝜓 ∨ ¬ 𝜑 ) ∨ ¬ 𝜒 ) ↔ ( ¬ 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ) |
23 |
|
orcom |
⊢ ( ( ¬ 𝜓 ∨ ¬ 𝜑 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |
24 |
|
imor |
⊢ ( ( 𝜑 → ¬ 𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |
25 |
23 24
|
bitr4i |
⊢ ( ( ¬ 𝜓 ∨ ¬ 𝜑 ) ↔ ( 𝜑 → ¬ 𝜓 ) ) |
26 |
25
|
orbi1i |
⊢ ( ( ( ¬ 𝜓 ∨ ¬ 𝜑 ) ∨ ¬ 𝜒 ) ↔ ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ) |
27 |
22 26
|
bitr3i |
⊢ ( ( ¬ 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ↔ ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ) |
28 |
|
orass |
⊢ ( ( ( ¬ 𝜓 ∨ 𝜑 ) ∨ ¬ 𝜏 ) ↔ ( ¬ 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) |
29 |
|
imor |
⊢ ( ( 𝜓 → 𝜑 ) ↔ ( ¬ 𝜓 ∨ 𝜑 ) ) |
30 |
29
|
bicomi |
⊢ ( ( ¬ 𝜓 ∨ 𝜑 ) ↔ ( 𝜓 → 𝜑 ) ) |
31 |
30
|
orbi1i |
⊢ ( ( ( ¬ 𝜓 ∨ 𝜑 ) ∨ ¬ 𝜏 ) ↔ ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) |
32 |
28 31
|
bitr3i |
⊢ ( ( ¬ 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ↔ ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) |
33 |
27 32
|
anbi12i |
⊢ ( ( ( ¬ 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ∧ ( ¬ 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ↔ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ) |
34 |
18 21 33
|
3bitri |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ¬ 𝜓 ) ↔ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ) |
35 |
34
|
orbi1i |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ¬ 𝜓 ) ∨ 𝜃 ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ∨ 𝜃 ) ) |
36 |
|
ordir |
⊢ ( ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ∨ 𝜃 ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜃 ) ∧ ( ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜃 ) ) ) |
37 |
|
orass |
⊢ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜃 ) ↔ ( ( 𝜑 → ¬ 𝜓 ) ∨ ( ¬ 𝜒 ∨ 𝜃 ) ) ) |
38 |
|
imor |
⊢ ( ( 𝜒 → 𝜃 ) ↔ ( ¬ 𝜒 ∨ 𝜃 ) ) |
39 |
38
|
bicomi |
⊢ ( ( ¬ 𝜒 ∨ 𝜃 ) ↔ ( 𝜒 → 𝜃 ) ) |
40 |
39
|
orbi2i |
⊢ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( ¬ 𝜒 ∨ 𝜃 ) ) ↔ ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ) |
41 |
37 40
|
bitri |
⊢ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜃 ) ↔ ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ) |
42 |
|
orass |
⊢ ( ( ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜃 ) ↔ ( ( 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 ∨ 𝜃 ) ) ) |
43 |
|
imor |
⊢ ( ( 𝜏 → 𝜃 ) ↔ ( ¬ 𝜏 ∨ 𝜃 ) ) |
44 |
43
|
bicomi |
⊢ ( ( ¬ 𝜏 ∨ 𝜃 ) ↔ ( 𝜏 → 𝜃 ) ) |
45 |
44
|
orbi2i |
⊢ ( ( ( 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 ∨ 𝜃 ) ) ↔ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) |
46 |
42 45
|
bitri |
⊢ ( ( ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜃 ) ↔ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) |
47 |
41 46
|
anbi12i |
⊢ ( ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜃 ) ∧ ( ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜃 ) ) ↔ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) ) |
48 |
35 36 47
|
3bitri |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ¬ 𝜓 ) ∨ 𝜃 ) ↔ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) ) |
49 |
6 48
|
bitr3i |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( ¬ 𝜓 ∨ 𝜃 ) ) ↔ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) ) |
50 |
|
orass |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ 𝜓 ) ∨ 𝜂 ) ↔ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( 𝜓 ∨ 𝜂 ) ) ) |
51 |
17
|
orbi1i |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ 𝜓 ) ↔ ( ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ∨ 𝜓 ) ) |
52 |
|
orcom |
⊢ ( ( ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ∨ 𝜓 ) ↔ ( 𝜓 ∨ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ) |
53 |
|
ordi |
⊢ ( ( 𝜓 ∨ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ↔ ( ( 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ∧ ( 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ) |
54 |
52 53
|
bitri |
⊢ ( ( ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ∨ 𝜓 ) ↔ ( ( 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ∧ ( 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ) |
55 |
|
orass |
⊢ ( ( ( 𝜓 ∨ ¬ 𝜑 ) ∨ ¬ 𝜒 ) ↔ ( 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ) |
56 |
|
orcom |
⊢ ( ( 𝜓 ∨ ¬ 𝜑 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) ) |
57 |
|
imor |
⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) ) |
58 |
56 57
|
bitr4i |
⊢ ( ( 𝜓 ∨ ¬ 𝜑 ) ↔ ( 𝜑 → 𝜓 ) ) |
59 |
58
|
orbi1i |
⊢ ( ( ( 𝜓 ∨ ¬ 𝜑 ) ∨ ¬ 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ) |
60 |
55 59
|
bitr3i |
⊢ ( ( 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ) |
61 |
|
orass |
⊢ ( ( ( 𝜓 ∨ 𝜑 ) ∨ ¬ 𝜏 ) ↔ ( 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) |
62 |
|
df-or |
⊢ ( ( 𝜓 ∨ 𝜑 ) ↔ ( ¬ 𝜓 → 𝜑 ) ) |
63 |
62
|
orbi1i |
⊢ ( ( ( 𝜓 ∨ 𝜑 ) ∨ ¬ 𝜏 ) ↔ ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) |
64 |
61 63
|
bitr3i |
⊢ ( ( 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ↔ ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) |
65 |
60 64
|
anbi12i |
⊢ ( ( ( 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ∧ ( 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ↔ ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ) |
66 |
51 54 65
|
3bitri |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ 𝜓 ) ↔ ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ) |
67 |
66
|
orbi1i |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ 𝜓 ) ∨ 𝜂 ) ↔ ( ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ∨ 𝜂 ) ) |
68 |
|
ordir |
⊢ ( ( ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ∨ 𝜂 ) ↔ ( ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜂 ) ∧ ( ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜂 ) ) ) |
69 |
|
orass |
⊢ ( ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜂 ) ↔ ( ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜒 ∨ 𝜂 ) ) ) |
70 |
|
imor |
⊢ ( ( 𝜒 → 𝜂 ) ↔ ( ¬ 𝜒 ∨ 𝜂 ) ) |
71 |
70
|
bicomi |
⊢ ( ( ¬ 𝜒 ∨ 𝜂 ) ↔ ( 𝜒 → 𝜂 ) ) |
72 |
71
|
orbi2i |
⊢ ( ( ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜒 ∨ 𝜂 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ) |
73 |
69 72
|
bitri |
⊢ ( ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜂 ) ↔ ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ) |
74 |
|
orass |
⊢ ( ( ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜂 ) ↔ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 ∨ 𝜂 ) ) ) |
75 |
|
imor |
⊢ ( ( 𝜏 → 𝜂 ) ↔ ( ¬ 𝜏 ∨ 𝜂 ) ) |
76 |
75
|
bicomi |
⊢ ( ( ¬ 𝜏 ∨ 𝜂 ) ↔ ( 𝜏 → 𝜂 ) ) |
77 |
76
|
orbi2i |
⊢ ( ( ( ¬ 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 ∨ 𝜂 ) ) ↔ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) |
78 |
74 77
|
bitri |
⊢ ( ( ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜂 ) ↔ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) |
79 |
73 78
|
anbi12i |
⊢ ( ( ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜂 ) ∧ ( ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜂 ) ) ↔ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) ) |
80 |
67 68 79
|
3bitri |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ 𝜓 ) ∨ 𝜂 ) ↔ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) ) |
81 |
50 80
|
bitr3i |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( 𝜓 ∨ 𝜂 ) ) ↔ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) ) |
82 |
49 81
|
anbi12i |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( ¬ 𝜓 ∨ 𝜃 ) ) ∧ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( 𝜓 ∨ 𝜂 ) ) ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) ) ) |
83 |
5 82
|
bitri |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( ( ¬ 𝜓 ∨ 𝜃 ) ∧ ( 𝜓 ∨ 𝜂 ) ) ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) ) ) |
84 |
3 4 83
|
3bitri |
⊢ ( ( if- ( 𝜑 , 𝜒 , 𝜏 ) → if- ( 𝜓 , 𝜃 , 𝜂 ) ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) ) ) |