| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfifp4 |
⊢ ( if- ( 𝜑 , 𝜒 , 𝜏 ) ↔ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ) |
| 2 |
|
dfifp4 |
⊢ ( if- ( 𝜓 , 𝜃 , 𝜂 ) ↔ ( ( ¬ 𝜓 ∨ 𝜃 ) ∧ ( 𝜓 ∨ 𝜂 ) ) ) |
| 3 |
1 2
|
imbi12i |
⊢ ( ( if- ( 𝜑 , 𝜒 , 𝜏 ) → if- ( 𝜓 , 𝜃 , 𝜂 ) ) ↔ ( ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) → ( ( ¬ 𝜓 ∨ 𝜃 ) ∧ ( 𝜓 ∨ 𝜂 ) ) ) ) |
| 4 |
|
imor |
⊢ ( ( ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) → ( ( ¬ 𝜓 ∨ 𝜃 ) ∧ ( 𝜓 ∨ 𝜂 ) ) ) ↔ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( ( ¬ 𝜓 ∨ 𝜃 ) ∧ ( 𝜓 ∨ 𝜂 ) ) ) ) |
| 5 |
|
ordi |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( ( ¬ 𝜓 ∨ 𝜃 ) ∧ ( 𝜓 ∨ 𝜂 ) ) ) ↔ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( ¬ 𝜓 ∨ 𝜃 ) ) ∧ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( 𝜓 ∨ 𝜂 ) ) ) ) |
| 6 |
|
orass |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ¬ 𝜓 ) ∨ 𝜃 ) ↔ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( ¬ 𝜓 ∨ 𝜃 ) ) ) |
| 7 |
|
ianor |
⊢ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ↔ ( ¬ ( ¬ 𝜑 ∨ 𝜒 ) ∨ ¬ ( 𝜑 ∨ 𝜏 ) ) ) |
| 8 |
|
pm4.52 |
⊢ ( ( 𝜑 ∧ ¬ 𝜒 ) ↔ ¬ ( ¬ 𝜑 ∨ 𝜒 ) ) |
| 9 |
8
|
bicomi |
⊢ ( ¬ ( ¬ 𝜑 ∨ 𝜒 ) ↔ ( 𝜑 ∧ ¬ 𝜒 ) ) |
| 10 |
|
ioran |
⊢ ( ¬ ( 𝜑 ∨ 𝜏 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜏 ) ) |
| 11 |
9 10
|
orbi12i |
⊢ ( ( ¬ ( ¬ 𝜑 ∨ 𝜒 ) ∨ ¬ ( 𝜑 ∨ 𝜏 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝜒 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜏 ) ) ) |
| 12 |
|
cases2 |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜒 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜏 ) ) ↔ ( ( 𝜑 → ¬ 𝜒 ) ∧ ( ¬ 𝜑 → ¬ 𝜏 ) ) ) |
| 13 |
|
imor |
⊢ ( ( 𝜑 → ¬ 𝜒 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) |
| 14 |
|
pm4.66 |
⊢ ( ( ¬ 𝜑 → ¬ 𝜏 ) ↔ ( 𝜑 ∨ ¬ 𝜏 ) ) |
| 15 |
13 14
|
anbi12i |
⊢ ( ( ( 𝜑 → ¬ 𝜒 ) ∧ ( ¬ 𝜑 → ¬ 𝜏 ) ) ↔ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ) |
| 16 |
12 15
|
bitri |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜒 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜏 ) ) ↔ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ) |
| 17 |
7 11 16
|
3bitri |
⊢ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ↔ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ) |
| 18 |
17
|
orbi1i |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ¬ 𝜓 ) ↔ ( ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ∨ ¬ 𝜓 ) ) |
| 19 |
|
orcom |
⊢ ( ( ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ∨ ¬ 𝜓 ) ↔ ( ¬ 𝜓 ∨ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ) |
| 20 |
|
ordi |
⊢ ( ( ¬ 𝜓 ∨ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ↔ ( ( ¬ 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ∧ ( ¬ 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ) |
| 21 |
19 20
|
bitri |
⊢ ( ( ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ∨ ¬ 𝜓 ) ↔ ( ( ¬ 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ∧ ( ¬ 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ) |
| 22 |
|
orass |
⊢ ( ( ( ¬ 𝜓 ∨ ¬ 𝜑 ) ∨ ¬ 𝜒 ) ↔ ( ¬ 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ) |
| 23 |
|
orcom |
⊢ ( ( ¬ 𝜓 ∨ ¬ 𝜑 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |
| 24 |
|
imor |
⊢ ( ( 𝜑 → ¬ 𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |
| 25 |
23 24
|
bitr4i |
⊢ ( ( ¬ 𝜓 ∨ ¬ 𝜑 ) ↔ ( 𝜑 → ¬ 𝜓 ) ) |
| 26 |
25
|
orbi1i |
⊢ ( ( ( ¬ 𝜓 ∨ ¬ 𝜑 ) ∨ ¬ 𝜒 ) ↔ ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ) |
| 27 |
22 26
|
bitr3i |
⊢ ( ( ¬ 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ↔ ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ) |
| 28 |
|
orass |
⊢ ( ( ( ¬ 𝜓 ∨ 𝜑 ) ∨ ¬ 𝜏 ) ↔ ( ¬ 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) |
| 29 |
|
imor |
⊢ ( ( 𝜓 → 𝜑 ) ↔ ( ¬ 𝜓 ∨ 𝜑 ) ) |
| 30 |
29
|
bicomi |
⊢ ( ( ¬ 𝜓 ∨ 𝜑 ) ↔ ( 𝜓 → 𝜑 ) ) |
| 31 |
30
|
orbi1i |
⊢ ( ( ( ¬ 𝜓 ∨ 𝜑 ) ∨ ¬ 𝜏 ) ↔ ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) |
| 32 |
28 31
|
bitr3i |
⊢ ( ( ¬ 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ↔ ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) |
| 33 |
27 32
|
anbi12i |
⊢ ( ( ( ¬ 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ∧ ( ¬ 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ↔ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ) |
| 34 |
18 21 33
|
3bitri |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ¬ 𝜓 ) ↔ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ) |
| 35 |
34
|
orbi1i |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ¬ 𝜓 ) ∨ 𝜃 ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ∨ 𝜃 ) ) |
| 36 |
|
ordir |
⊢ ( ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ∨ 𝜃 ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜃 ) ∧ ( ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜃 ) ) ) |
| 37 |
|
orass |
⊢ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜃 ) ↔ ( ( 𝜑 → ¬ 𝜓 ) ∨ ( ¬ 𝜒 ∨ 𝜃 ) ) ) |
| 38 |
|
imor |
⊢ ( ( 𝜒 → 𝜃 ) ↔ ( ¬ 𝜒 ∨ 𝜃 ) ) |
| 39 |
38
|
bicomi |
⊢ ( ( ¬ 𝜒 ∨ 𝜃 ) ↔ ( 𝜒 → 𝜃 ) ) |
| 40 |
39
|
orbi2i |
⊢ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( ¬ 𝜒 ∨ 𝜃 ) ) ↔ ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ) |
| 41 |
37 40
|
bitri |
⊢ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜃 ) ↔ ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ) |
| 42 |
|
orass |
⊢ ( ( ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜃 ) ↔ ( ( 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 ∨ 𝜃 ) ) ) |
| 43 |
|
imor |
⊢ ( ( 𝜏 → 𝜃 ) ↔ ( ¬ 𝜏 ∨ 𝜃 ) ) |
| 44 |
43
|
bicomi |
⊢ ( ( ¬ 𝜏 ∨ 𝜃 ) ↔ ( 𝜏 → 𝜃 ) ) |
| 45 |
44
|
orbi2i |
⊢ ( ( ( 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 ∨ 𝜃 ) ) ↔ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) |
| 46 |
42 45
|
bitri |
⊢ ( ( ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜃 ) ↔ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) |
| 47 |
41 46
|
anbi12i |
⊢ ( ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜃 ) ∧ ( ( ( 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜃 ) ) ↔ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) ) |
| 48 |
35 36 47
|
3bitri |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ¬ 𝜓 ) ∨ 𝜃 ) ↔ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) ) |
| 49 |
6 48
|
bitr3i |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( ¬ 𝜓 ∨ 𝜃 ) ) ↔ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) ) |
| 50 |
|
orass |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ 𝜓 ) ∨ 𝜂 ) ↔ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( 𝜓 ∨ 𝜂 ) ) ) |
| 51 |
17
|
orbi1i |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ 𝜓 ) ↔ ( ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ∨ 𝜓 ) ) |
| 52 |
|
orcom |
⊢ ( ( ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ∨ 𝜓 ) ↔ ( 𝜓 ∨ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ) |
| 53 |
|
ordi |
⊢ ( ( 𝜓 ∨ ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ↔ ( ( 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ∧ ( 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ) |
| 54 |
52 53
|
bitri |
⊢ ( ( ( ( ¬ 𝜑 ∨ ¬ 𝜒 ) ∧ ( 𝜑 ∨ ¬ 𝜏 ) ) ∨ 𝜓 ) ↔ ( ( 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ∧ ( 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ) |
| 55 |
|
orass |
⊢ ( ( ( 𝜓 ∨ ¬ 𝜑 ) ∨ ¬ 𝜒 ) ↔ ( 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ) |
| 56 |
|
orcom |
⊢ ( ( 𝜓 ∨ ¬ 𝜑 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) ) |
| 57 |
|
imor |
⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) ) |
| 58 |
56 57
|
bitr4i |
⊢ ( ( 𝜓 ∨ ¬ 𝜑 ) ↔ ( 𝜑 → 𝜓 ) ) |
| 59 |
58
|
orbi1i |
⊢ ( ( ( 𝜓 ∨ ¬ 𝜑 ) ∨ ¬ 𝜒 ) ↔ ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ) |
| 60 |
55 59
|
bitr3i |
⊢ ( ( 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ) |
| 61 |
|
orass |
⊢ ( ( ( 𝜓 ∨ 𝜑 ) ∨ ¬ 𝜏 ) ↔ ( 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) |
| 62 |
|
df-or |
⊢ ( ( 𝜓 ∨ 𝜑 ) ↔ ( ¬ 𝜓 → 𝜑 ) ) |
| 63 |
62
|
orbi1i |
⊢ ( ( ( 𝜓 ∨ 𝜑 ) ∨ ¬ 𝜏 ) ↔ ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) |
| 64 |
61 63
|
bitr3i |
⊢ ( ( 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ↔ ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) |
| 65 |
60 64
|
anbi12i |
⊢ ( ( ( 𝜓 ∨ ( ¬ 𝜑 ∨ ¬ 𝜒 ) ) ∧ ( 𝜓 ∨ ( 𝜑 ∨ ¬ 𝜏 ) ) ) ↔ ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ) |
| 66 |
51 54 65
|
3bitri |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ 𝜓 ) ↔ ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ) |
| 67 |
66
|
orbi1i |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ 𝜓 ) ∨ 𝜂 ) ↔ ( ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ∨ 𝜂 ) ) |
| 68 |
|
ordir |
⊢ ( ( ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ) ∨ 𝜂 ) ↔ ( ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜂 ) ∧ ( ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜂 ) ) ) |
| 69 |
|
orass |
⊢ ( ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜂 ) ↔ ( ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜒 ∨ 𝜂 ) ) ) |
| 70 |
|
imor |
⊢ ( ( 𝜒 → 𝜂 ) ↔ ( ¬ 𝜒 ∨ 𝜂 ) ) |
| 71 |
70
|
bicomi |
⊢ ( ( ¬ 𝜒 ∨ 𝜂 ) ↔ ( 𝜒 → 𝜂 ) ) |
| 72 |
71
|
orbi2i |
⊢ ( ( ( 𝜑 → 𝜓 ) ∨ ( ¬ 𝜒 ∨ 𝜂 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ) |
| 73 |
69 72
|
bitri |
⊢ ( ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜂 ) ↔ ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ) |
| 74 |
|
orass |
⊢ ( ( ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜂 ) ↔ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 ∨ 𝜂 ) ) ) |
| 75 |
|
imor |
⊢ ( ( 𝜏 → 𝜂 ) ↔ ( ¬ 𝜏 ∨ 𝜂 ) ) |
| 76 |
75
|
bicomi |
⊢ ( ( ¬ 𝜏 ∨ 𝜂 ) ↔ ( 𝜏 → 𝜂 ) ) |
| 77 |
76
|
orbi2i |
⊢ ( ( ( ¬ 𝜓 → 𝜑 ) ∨ ( ¬ 𝜏 ∨ 𝜂 ) ) ↔ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) |
| 78 |
74 77
|
bitri |
⊢ ( ( ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜂 ) ↔ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) |
| 79 |
73 78
|
anbi12i |
⊢ ( ( ( ( ( 𝜑 → 𝜓 ) ∨ ¬ 𝜒 ) ∨ 𝜂 ) ∧ ( ( ( ¬ 𝜓 → 𝜑 ) ∨ ¬ 𝜏 ) ∨ 𝜂 ) ) ↔ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) ) |
| 80 |
67 68 79
|
3bitri |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ 𝜓 ) ∨ 𝜂 ) ↔ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) ) |
| 81 |
50 80
|
bitr3i |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( 𝜓 ∨ 𝜂 ) ) ↔ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) ) |
| 82 |
49 81
|
anbi12i |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( ¬ 𝜓 ∨ 𝜃 ) ) ∧ ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( 𝜓 ∨ 𝜂 ) ) ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) ) ) |
| 83 |
5 82
|
bitri |
⊢ ( ( ¬ ( ( ¬ 𝜑 ∨ 𝜒 ) ∧ ( 𝜑 ∨ 𝜏 ) ) ∨ ( ( ¬ 𝜓 ∨ 𝜃 ) ∧ ( 𝜓 ∨ 𝜂 ) ) ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) ) ) |
| 84 |
3 4 83
|
3bitri |
⊢ ( ( if- ( 𝜑 , 𝜒 , 𝜏 ) → if- ( 𝜓 , 𝜃 , 𝜂 ) ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜃 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜂 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜏 → 𝜂 ) ) ) ) ) |