Metamath Proof Explorer


Theorem ifpim123g

Description: Implication of conditional logical operators. The right hand side is basically conjunctive normal form which is useful in proofs. (Contributed by RP, 16-Apr-2020)

Ref Expression
Assertion ifpim123g if-φχτif-ψθηφ¬ψχθψφτθφψχη¬ψφτη

Proof

Step Hyp Ref Expression
1 dfifp4 if-φχτ¬φχφτ
2 dfifp4 if-ψθη¬ψθψη
3 1 2 imbi12i if-φχτif-ψθη¬φχφτ¬ψθψη
4 imor ¬φχφτ¬ψθψ第φχφτ¬ψθψη
5 ordi ¬¬φχφτ¬ψθψ第φχφτ¬ψ謬φχφτψη
6 orass ¬¬φχφτ¬ψ謬φχφτ¬ψθ
7 ianor ¬¬φχφτ¬¬φχ¬φτ
8 pm4.52 φ¬χ¬¬φχ
9 8 bicomi ¬¬φχφ¬χ
10 ioran ¬φτ¬φ¬τ
11 9 10 orbi12i ¬¬φχ¬φτφ¬χ¬φ¬τ
12 cases2 φ¬χ¬φ¬τφ¬χ¬φ¬τ
13 imor φ¬χ¬φ¬χ
14 pm4.66 ¬φ¬τφ¬τ
15 13 14 anbi12i φ¬χ¬φ¬τ¬φ¬χφ¬τ
16 12 15 bitri φ¬χ¬φ¬τ¬φ¬χφ¬τ
17 7 11 16 3bitri ¬¬φχφτ¬φ¬χφ¬τ
18 17 orbi1i ¬¬φχφτ¬ψ¬φ¬χφ¬τ¬ψ
19 orcom ¬φ¬χφ¬τ¬ψ¬ψ¬φ¬χφ¬τ
20 ordi ¬ψ¬φ¬χφ¬τ¬ψ¬φ¬χ¬ψφ¬τ
21 19 20 bitri ¬φ¬χφ¬τ¬ψ¬ψ¬φ¬χ¬ψφ¬τ
22 orass ¬ψ¬φ¬χ¬ψ¬φ¬χ
23 orcom ¬ψ¬φ¬φ¬ψ
24 imor φ¬ψ¬φ¬ψ
25 23 24 bitr4i ¬ψ¬φφ¬ψ
26 25 orbi1i ¬ψ¬φ¬χφ¬ψ¬χ
27 22 26 bitr3i ¬ψ¬φ¬χφ¬ψ¬χ
28 orass ¬ψφ¬τ¬ψφ¬τ
29 imor ψφ¬ψφ
30 29 bicomi ¬ψφψφ
31 30 orbi1i ¬ψφ¬τψφ¬τ
32 28 31 bitr3i ¬ψφ¬τψφ¬τ
33 27 32 anbi12i ¬ψ¬φ¬χ¬ψφ¬τφ¬ψ¬χψφ¬τ
34 18 21 33 3bitri ¬¬φχφτ¬ψφ¬ψ¬χψφ¬τ
35 34 orbi1i ¬¬φχφτ¬ψθφ¬ψ¬χψφ¬τθ
36 ordir φ¬ψ¬χψφ¬τθφ¬ψ¬χθψφ¬τθ
37 orass φ¬ψ¬χθφ¬ψ¬χθ
38 imor χθ¬χθ
39 38 bicomi ¬χθχθ
40 39 orbi2i φ¬ψ¬χθφ¬ψχθ
41 37 40 bitri φ¬ψ¬χθφ¬ψχθ
42 orass ψφ¬τθψφ¬τθ
43 imor τθ¬τθ
44 43 bicomi ¬τθτθ
45 44 orbi2i ψφ¬τθψφτθ
46 42 45 bitri ψφ¬τθψφτθ
47 41 46 anbi12i φ¬ψ¬χθψφ¬τθφ¬ψχθψφτθ
48 35 36 47 3bitri ¬¬φχφτ¬ψθφ¬ψχθψφτθ
49 6 48 bitr3i ¬¬φχφτ¬ψθφ¬ψχθψφτθ
50 orass ¬¬φχφτψ第φχφτψη
51 17 orbi1i ¬¬φχφτψ¬φ¬χφ¬τψ
52 orcom ¬φ¬χφ¬τψψ¬φ¬χφ¬τ
53 ordi ψ¬φ¬χφ¬τψ¬φ¬χψφ¬τ
54 52 53 bitri ¬φ¬χφ¬τψψ¬φ¬χψφ¬τ
55 orass ψ¬φ¬χψ¬φ¬χ
56 orcom ψ¬φ¬φψ
57 imor φψ¬φψ
58 56 57 bitr4i ψ¬φφψ
59 58 orbi1i ψ¬φ¬χφψ¬χ
60 55 59 bitr3i ψ¬φ¬χφψ¬χ
61 orass ψφ¬τψφ¬τ
62 df-or ψφ¬ψφ
63 62 orbi1i ψφ¬τ¬ψφ¬τ
64 61 63 bitr3i ψφ¬τ¬ψφ¬τ
65 60 64 anbi12i ψ¬φ¬χψφ¬τφψ¬χ¬ψφ¬τ
66 51 54 65 3bitri ¬¬φχφτψφψ¬χ¬ψφ¬τ
67 66 orbi1i ¬¬φχφτψηφψ¬χ¬ψφ¬τη
68 ordir φψ¬χ¬ψφ¬τηφψ¬χη¬ψφ¬τη
69 orass φψ¬χηφψ¬χη
70 imor χη¬χη
71 70 bicomi ¬χηχη
72 71 orbi2i φψ¬χηφψχη
73 69 72 bitri φψ¬χηφψχη
74 orass ¬ψφ¬τη¬ψφ¬τη
75 imor τη¬τη
76 75 bicomi ¬τητη
77 76 orbi2i ¬ψφ¬τη¬ψφτη
78 74 77 bitri ¬ψφ¬τη¬ψφτη
79 73 78 anbi12i φψ¬χη¬ψφ¬τηφψχη¬ψφτη
80 67 68 79 3bitri ¬¬φχφτψηφψχη¬ψφτη
81 50 80 bitr3i ¬¬φχφτψηφψχη¬ψφτη
82 49 81 anbi12i ¬¬φχφτ¬ψ謬φχφτψηφ¬ψχθψφτθφψχη¬ψφτη
83 5 82 bitri ¬¬φχφτ¬ψθψηφ¬ψχθψφτθφψχη¬ψφτη
84 3 4 83 3bitri if-φχτif-ψθηφ¬ψχθψφτθφψχη¬ψφτη