Step |
Hyp |
Ref |
Expression |
1 |
|
ifpim123g |
⊢ ( ( if- ( 𝜑 , 𝜒 , 𝜃 ) → if- ( 𝜓 , 𝜒 , 𝜃 ) ) ↔ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜒 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜃 ) ) ) ) ) |
2 |
|
id |
⊢ ( 𝜒 → 𝜒 ) |
3 |
2
|
olci |
⊢ ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜒 ) ) |
4 |
3
|
biantrur |
⊢ ( ( ( 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ↔ ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜒 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ) |
5 |
4
|
bicomi |
⊢ ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜒 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ↔ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) |
6 |
|
id |
⊢ ( 𝜃 → 𝜃 ) |
7 |
6
|
olci |
⊢ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜃 ) ) |
8 |
7
|
biantru |
⊢ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ↔ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜃 ) ) ) ) |
9 |
8
|
bicomi |
⊢ ( ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜃 ) ) ) ↔ ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ) |
10 |
5 9
|
anbi12i |
⊢ ( ( ( ( ( 𝜑 → ¬ 𝜓 ) ∨ ( 𝜒 → 𝜒 ) ) ∧ ( ( 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ) ∧ ( ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ∧ ( ( ¬ 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜃 ) ) ) ) ↔ ( ( ( 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ∧ ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ) ) |
11 |
1 10
|
bitri |
⊢ ( ( if- ( 𝜑 , 𝜒 , 𝜃 ) → if- ( 𝜓 , 𝜒 , 𝜃 ) ) ↔ ( ( ( 𝜓 → 𝜑 ) ∨ ( 𝜃 → 𝜒 ) ) ∧ ( ( 𝜑 → 𝜓 ) ∨ ( 𝜒 → 𝜃 ) ) ) ) |